文章目录
- 1. Hashtable
- 2. ConcurrentHashMap基本使用
- 3. ConcurrentHashMap1.7原理
- 4. ConcurrentHashMap1.8原理
- 5. CountDownLatch
- 6. Semaphore
1. Hashtable
Hashtable出现的原因 : 在集合类中HashMap是比较常用的集合对象,但是HashMap是线程不安全的(多线程环境下可能会存在问题)。为了保证数据的安全性我们可以使用Hashtable,但是Hashtable的效率低下。
==代码实现 ==:
import java.util.HashMap;
import java.util.Hashtable;
public class MyHashtableDemo {
public static void main(String[] args) throws InterruptedException {
Hashtable<String, String> hm = new Hashtable<>();
Thread t1 = new Thread(() -> {
for (int i = 0; i < 25; i++) {
hm.put(i + "", i + "");
}
});
Thread t2 = new Thread(() -> {
for (int i = 25; i < 51; i++) {
hm.put(i + "", i + "");
}
});
t1.start();
t2.start();
System.out.println("----------------------------");
//为了t1和t2能把数据全部添加完毕
Thread.sleep(1000);
//0-0 1-1 ..... 50- 50
for (int i = 0; i < 51; i++) {
System.out.println(hm.get(i + ""));
}//0 1 2 3 .... 50
}
}
2. ConcurrentHashMap基本使用
ConcurrentHashMap出现的原因 : 在集合类中HashMap
是比较常用的集合对象,但是HashMap
是线程不安全的(多线程环境下可能会存在问题)。为了保证数据的安全性我们可以使用Hashtable
,但是Hashtable
的效率低下。
基于以上两个原因我们可以使用JDK1.5以后所提供的ConcurrentHashMap。
-
体系结构 :
-
总结 :
1 ,HashMap是线程不安全的。多线程环境下会有数据安全问题
2 ,Hashtable是线程安全的,但是会将整张表锁起来,效率低下
3,ConcurrentHashMap也是线程安全的,效率较高。 在JDK7和JDK8中,底层原理不一样。 -
代码实现
import java.util.Hashtable; import java.util.concurrent.ConcurrentHashMap; public class MyConcurrentHashMapDemo { public static void main(String[] args) throws InterruptedException { ConcurrentHashMap<String, String> hm = new ConcurrentHashMap<>(100); Thread t1 = new Thread(() -> { for (int i = 0; i < 25; i++) { hm.put(i + "", i + ""); } }); Thread t2 = new Thread(() -> { for (int i = 25; i < 51; i++) { hm.put(i + "", i + ""); } }); t1.start(); t2.start(); System.out.println("----------------------------"); //为了t1和t2能把数据全部添加完毕 Thread.sleep(1000); //0-0 1-1 ..... 50- 50 for (int i = 0; i < 51; i++) { System.out.println(hm.get(i + "")); }//0 1 2 3 .... 50 } }
3. ConcurrentHashMap1.7原理
4. ConcurrentHashMap1.8原理
总结 :
1,如果使用空参构造创建ConcurrentHashMap对象,则什么事情都不做。 在第一次添加元素的
时候创建哈希表
2,计算当前元素应存入的索引。
3,如果该索引位置为null,则利用cas算法,将本结点添加到数组中。
4,如果该索引位置不为null,则利用volatile关键字获得当前位置最新的结点地址,挂在他下面,变
成链表。
5,当链表的长度大于等于8时,自动转换成红黑树6,以链表或者红黑树头结点为锁对象,配合悲观
锁保证多线程操作集合时数据的安全性。
5. CountDownLatch
- CountDownLatch类 :
-
使用场景:
让某一条线程等待其他线程执行完毕之后再执行
-
代码实现
import java.util.concurrent.CountDownLatch; public class ChileThread1 extends Thread { private CountDownLatch countDownLatch; public ChileThread1(CountDownLatch countDownLatch) { this.countDownLatch = countDownLatch; } @Override public void run() { //1.吃饺子 for (int i = 1; i <= 10; i++) { System.out.println(getName() + "在吃第" + i + "个饺子"); } //2.吃完说一声 //每一次countDown方法的时候,就让计数器-1 countDownLatch.countDown(); } }
import java.util.concurrent.CountDownLatch; public class ChileThread2 extends Thread { private CountDownLatch countDownLatch; public ChileThread2(CountDownLatch countDownLatch) { this.countDownLatch = countDownLatch; } @Override public void run() { //1.吃饺子 for (int i = 1; i <= 15; i++) { System.out.println(getName() + "在吃第" + i + "个饺子"); } //2.吃完说一声 //每一次countDown方法的时候,就让计数器-1 countDownLatch.countDown(); } }
import java.util.concurrent.CountDownLatch; public class ChileThread3 extends Thread { private CountDownLatch countDownLatch; public ChileThread3(CountDownLatch countDownLatch) { this.countDownLatch = countDownLatch; } @Override public void run() { //1.吃饺子 for (int i = 1; i <= 20; i++) { System.out.println(getName() + "在吃第" + i + "个饺子"); } //2.吃完说一声 //每一次countDown方法的时候,就让计数器-1 countDownLatch.countDown(); } }
import java.util.concurrent.CountDownLatch; public class MotherThread extends Thread { private CountDownLatch countDownLatch; public MotherThread(CountDownLatch countDownLatch) { this.countDownLatch = countDownLatch; } @Override public void run() { //1.等待 try { //当计数器变成0的时候,会自动唤醒这里等待的线程。 countDownLatch.await(); } catch (InterruptedException e) { e.printStackTrace(); } //2.收拾碗筷 System.out.println("妈妈在收拾碗筷"); } }
import java.util.concurrent.CountDownLatch; public class MyCountDownLatchDemo { public static void main(String[] args) { //1.创建CountDownLatch的对象,需要传递给四个线程。 //在底层就定义了一个计数器,此时计数器的值就是3 CountDownLatch countDownLatch = new CountDownLatch(3); //2.创建四个线程对象并开启他们。 MotherThread motherThread = new MotherThread(countDownLatch); motherThread.start(); ChileThread1 t1 = new ChileThread1(countDownLatch); t1.setName("小明"); ChileThread2 t2 = new ChileThread2(countDownLatch); t2.setName("小红"); ChileThread3 t3 = new ChileThread3(countDownLatch); t3.setName("小刚"); t1.start(); t2.start(); t3.start(); } }
-
总结 :
- CountDownLatch(int count):参数写等待线程的数量。并定义了一个计数器。
- await():让线程等待,当计数器为0时,会唤醒等待的线程
- countDown(): 线程执行完毕时调用,会将计数器-1。
6. Semaphore
-
使用场景 :
可以控制访问特定资源的线程数量。 -
实现步骤 :
1,需要有人管理这个通道
2,当有车进来了,发通行许可证
3,当车出去了,收回通行许可证
4,如果通行许可证发完了,那么其他车辆只能等着 -
代码实现 :
import java.util.concurrent.Semaphore; public class MyRunnable implements Runnable { //1.获得管理员对象, private Semaphore semaphore = new Semaphore(2); @Override public void run() { //2.获得通行证 try { semaphore.acquire(); //3.开始行驶 System.out.println("获得了通行证开始行驶"); Thread.sleep(2000); System.out.println("归还通行证"); //4.归还通行证 semaphore.release(); } catch (InterruptedException e) { e.printStackTrace(); } } }
public class MySemaphoreDemo { public static void main(String[] args) { MyRunnable mr = new MyRunnable(); for (int i = 0; i < 100; i++) { new Thread(mr).start(); } } }