数据结构基础-数组

news2024/11/24 13:56:05

2.1 数组

概述

定义

在计算机科学中,数组是由一组元素(值或变量)组成的数据结构,每个元素有至少一个索引或键来标识

In computer science, an array is a data structure consisting of a collection of elements (values or variables), each identified by at least one array index or key

因为数组内的元素是连续存储的,所以数组中元素的地址,可以通过其索引计算出来,例如:

int[] array = {1,2,3,4,5}

知道了数组的数据起始地址 BaseAddress,就可以由公式 BaseAddress + i * size 计算出索引 i 元素的地址

  • i 即索引,在 Java、C 等语言都是从 0 开始
  • size 是每个元素占用字节,例如 int 占 4,double 占 8

小测试

byte[] array = {1,2,3,4,5}

已知 array 的数据的起始地址是 0x7138f94c8,那么元素 3 的地址是什么?

答:0x7138f94c8 + 2 * 1 = 0x7138f94ca

空间占用

Java 中数组结构为

  • 8 字节 markword
  • 4 字节 class 指针(压缩 class 指针的情况)
  • 4 字节 数组大小(决定了数组最大容量是 2^{32})
  • 数组元素 + 对齐字节(java 中所有对象大小都是 8 字节的整数倍[^12],不足的要用对齐字节补足)

例如

int[] array = {1, 2, 3, 4, 5};

的大小为 40 个字节,组成如下

8 + 4 + 4 + 5*4 + 4(alignment)

随机访问性能

即根据索引查找元素,时间复杂度是 O(1)

动态数组

java 版本

public class DynamicArray implements Iterable<Integer> {
    private int size = 0; // 逻辑大小
    private int capacity = 8; // 容量
    private int[] array = {};


    /**
     * 向最后位置 [size] 添加元素
     *
     * @param element 待添加元素
     */
    public void addLast(int element) {
        add(size, element);
    }

    /**
     * 向 [0 .. size] 位置添加元素
     *
     * @param index   索引位置
     * @param element 待添加元素
     */
    public void add(int index, int element) {
        checkAndGrow();

        // 添加逻辑
        if (index >= 0 && index < size) {
            // 向后挪动, 空出待插入位置
            System.arraycopy(array, index,
                    array, index + 1, size - index);
        }
        array[index] = element;
        size++;
    }

    private void checkAndGrow() {
        // 容量检查
        if (size == 0) {
            array = new int[capacity];
        } else if (size == capacity) {
            // 进行扩容, 1.5 1.618 2
            capacity += capacity >> 1;
            int[] newArray = new int[capacity];
            System.arraycopy(array, 0,
                    newArray, 0, size);
            array = newArray;
        }
    }

    /**
     * 从 [0 .. size) 范围删除元素
     *
     * @param index 索引位置
     * @return 被删除元素
     */
    public int remove(int index) { // [0..size)
        int removed = array[index];
        if (index < size - 1) {
            // 向前挪动
            System.arraycopy(array, index + 1,
                    array, index, size - index - 1);
        }
        size--;
        return removed;
    }


    /**
     * 查询元素
     *
     * @param index 索引位置, 在 [0..size) 区间内
     * @return 该索引位置的元素
     */
    public int get(int index) {
        return array[index];
    }

    /**
     * 遍历方法1
     *
     * @param consumer 遍历要执行的操作, 入参: 每个元素
     */
    public void foreach(Consumer<Integer> consumer) {
        for (int i = 0; i < size; i++) {
            // 提供 array[i]
            // 返回 void
            consumer.accept(array[i]);
        }
    }

    /**
     * 遍历方法2 - 迭代器遍历
     */
    @Override
    public Iterator<Integer> iterator() {
        return new Iterator<Integer>() {
            int i = 0;

            @Override
            public boolean hasNext() { // 有没有下一个元素
                return i < size;
            }

            @Override
            public Integer next() { // 返回当前元素,并移动到下一个元素
                return array[i++];
            }
        };
    }

    /**
     * 遍历方法3 - stream 遍历
     *
     * @return stream 流
     */
    public IntStream stream() {
        return IntStream.of(Arrays.copyOfRange(array, 0, size));
    }
}
  • 这些方法实现,都简化了 index 的有效性判断,假设输入的 index 都是合法的

插入或删除性能

头部位置,时间复杂度是 O(n)

中间位置,时间复杂度是 O(n)

尾部位置,时间复杂度是 O(1)(均摊来说)

二维数组

int[][] array = {
    {11, 12, 13, 14, 15},
    {21, 22, 23, 24, 25},
    {31, 32, 33, 34, 35},
};

内存图如下

image-20221104114132056
  • 二维数组占 32 个字节,其中 array[0],array[1],array[2] 三个元素分别保存了指向三个一维数组的引用

  • 三个一维数组各占 40 个字节

  • 它们在内层布局上是连续

更一般的,对一个二维数组 Array[m][n]

  • m 是外层数组的长度,可以看作 row 行
  • n 是内层数组的长度,可以看作 column 列
  • 当访问 Array[i][j],0\leq i \lt m, 0\leq j \lt n时,就相当于
    • 先找到第 i 个内层数组(行)
    • 再找到此内层数组中第 j 个元素(列)

小测试

Java 环境下(不考虑类指针和引用压缩,此为默认情况),有下面的二维数组

byte[][] array = {
    {11, 12, 13, 14, 15},
    {21, 22, 23, 24, 25},
    {31, 32, 33, 34, 35},
};

已知 array 对象起始地址是 0x1000,那么 23 这个元素的地址是什么?

答:

  • 起始地址 0x1000
  • 外层数组大小:16字节对象头 + 3元素 * 每个引用4字节 + 4 对齐字节 = 32 = 0x20
  • 第一个内层数组大小:16字节对象头 + 5元素 * 每个byte1字节 + 3 对齐字节 = 24 = 0x18
  • 第二个内层数组,16字节对象头 = 0x10,待查找元素索引为 2
  • 最后结果 = 0x1000 + 0x20 + 0x18 + 0x10 + 2*1 = 0x104a

局部性原理

这里只讨论空间局部性

  • cpu 读取内存(速度慢)数据后,会将其放入高速缓存(速度快)当中,如果后来的计算再用到此数据,在缓存中能读到的话,就不必读内存了
  • 缓存的最小存储单位是缓存行(cache line),一般是 64 bytes,一次读的数据少了不划算啊,因此最少读 64 bytes 填满一个缓存行,因此读入某个数据时也会读取其临近的数据,这就是所谓空间局部性

对效率的影响

比较下面 ij 和 ji 两个方法的执行效率

int rows = 1000000;
int columns = 14;
int[][] a = new int[rows][columns];

StopWatch sw = new StopWatch();
sw.start("ij");
ij(a, rows, columns);
sw.stop();
sw.start("ji");
ji(a, rows, columns);
sw.stop();
System.out.println(sw.prettyPrint());

ij 方法

public static void ij(int[][] a, int rows, int columns) {
    long sum = 0L;
    for (int i = 0; i < rows; i++) {
        for (int j = 0; j < columns; j++) {
            sum += a[i][j];
        }
    }
    System.out.println(sum);
}

ji 方法

public static void ji(int[][] a, int rows, int columns) {
    long sum = 0L;
    for (int j = 0; j < columns; j++) {
        for (int i = 0; i < rows; i++) {
            sum += a[i][j];
        }
    }
    System.out.println(sum);
}

执行结果

0
0
StopWatch '': running time = 96283300 ns
---------------------------------------------
ns         %     Task name
---------------------------------------------
016196200  017%  ij
080087100  083%  ji

可以看到 ij 的效率比 ji 快很多,为什么呢?

  • 缓存是有限的,当新数据来了后,一些旧的缓存行数据就会被覆盖
  • 如果不能充分利用缓存的数据,就会造成效率低下

以 ji 执行为例,第一次内循环要读入 [0,0] 这条数据,由于局部性原理,读入 [0,0] 的同时也读入了 [0,1] … [0,13],如图所示

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-hzjNiwHx-1685434638582)(.\imgs\image-20221104164329026.png)]

但很遗憾,第二次内循环要的是 [1,0] 这条数据,缓存中没有,于是再读入了下图的数据

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Jbrvo0jJ-1685434638587)(.\imgs\image-20221104164716282.png)]

这显然是一种浪费,因为 [0,1] … [0,13] 包括 [1,1] … [1,13] 这些数据虽然读入了缓存,却没有及时用上,而缓存的大小是有限的,等执行到第九次内循环时

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9IosIZS2-1685434638589)(.\imgs\image-20221104164947154.png)]

缓存的第一行数据已经被新的数据 [8,0] … [8,13] 覆盖掉了,以后如果再想读,比如 [0,1],又得到内存去读了

同理可以分析 ij 函数则能充分利用局部性原理加载到的缓存数据

举一反三

  1. I/O 读写时同样可以体现局部性原理

  2. 数组可以充分利用局部性原理,那么链表呢?

    答:链表不行,因为链表的元素并非相邻存储

越界检查

java 中对数组元素的读写都有越界检查,类似于下面的代码

bool is_within_bounds(int index) const        
{ 
    return 0 <= index && index < length(); 
}
  • 代码位置:openjdk\src\hotspot\share\oops\arrayOop.hpp

只不过此检查代码,不需要由程序员自己来调用,JVM 会帮我们调用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/589135.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

在 Linux 中启动时自动启动 Docker 容器的 2 种方法

Docker 是一种流行的容器化平台&#xff0c;允许开发人员将应用程序及其依赖项打包成一个独立的容器&#xff0c;以便在不同环境中运行。在 Linux 系统中&#xff0c;我们可以通过配置来实现在系统启动时自动启动 Docker 容器。本文将详细介绍两种方法&#xff0c;以便您了解如…

软件测试面试了一个00后,让我见识到了什么是内卷届的天花板

公司前段缺人&#xff0c;也面了不少测试&#xff0c;结果竟然没有一个合适的。一开始瞄准的就是中级的水准&#xff0c;也没指望来大牛&#xff0c;提供的薪资也不低&#xff0c;面试的人很多&#xff0c;但平均水平很让人失望。令我印象最深的是一个00后测试员&#xff0c;他…

Android bitmap保姆级教学

1. 认识Bitmap Bitmap是一个final类&#xff0c;因此不能被继承。Bitmap只有一个构造方法&#xff0c;且该构造方法是没有任何访问权限修饰符修饰&#xff0c;也就是说该构造方法是friendly&#xff0c;但是谷歌称Bitmap的构造方法是private&#xff08;私有的&#xff09;&am…

【C++】this 指针的概念

欢迎来到博主 Apeiron 的博客&#xff0c;祝您旅程愉快 &#xff01; 时止则止&#xff0c;时行则行。动静不失其时&#xff0c;其道光明。 目录 1、缘起 2、this 指针的用途 2.1、用途 1 2.1.1 解法 1 2.1.2 解法 2 2.2、用途 2 2.3、用途 3 3、总结 1、缘起 我…

网络编程_TCP/IP四层协议分层

网络编程_TCP/IP四层协议分层 1. OSI七层协议模型 (open system interconnection)与TCP/IP四层协议分层2. 协议封装3. TCP 协议头部4.三次握手5.滑动窗口正常情况丢包情况 6.四次挥手 1. OSI七层协议模型 (open system interconnection)与TCP/IP四层协议分层 OSI七层协议模型 (…

珞珈一号夜间灯光数据校正流程

一、前言 随着珞珈一号夜间灯光数据的发射,其高分辨率等优异性能,可以为我国相关部门监测国内和全球宏观经济运行情况,为政府决策提供客观依据,珞珈一号理想情况下荷在15天内完成绘制全球夜光影像,提供我国或者全球GDP指数、碳排放指数、城市住房空置率指数等专题产品。 …

larvael dcat-admin 表单设置自定义样式

表单有些不是自己想要的样式想要覆写或者增加 可以如下 public function form() {​​​​​​​$this->column(6, function () {$this->dateRange(order_created_at.start, order_created_at.end)->label(下单时间)->setLabelClass([input-group]) // 设置样式-&…

盘点几个实现VLAN间路由的好方法

在真实的网络中&#xff0c;常常需要跨VLAN通信。 许多网络工作者通常选择一些方法来实现不同VLAN中的主机之间的相互访问&#xff0c;如单臂路由。 然而&#xff0c;由于单臂路由技术的一些限制&#xff0c;如带宽和转发效率&#xff0c;这种技术是很少使用。 三层交换机在…

SpringBoot 集成WebSocket详解

感谢参考文章的博主&#xff0c;关于WebSocket概述和使用写的都很详细&#xff0c;这里结合自己的理解&#xff0c;整理了一下。 一、WebSocket概述 1、WebSocket简介 WebSocket协议是基于TCP的一种新的网络协议。它实现了浏览器与服务器全双工(full-duplex)通信——允许服务器…

一文详解 Sa-Token 中的 SaSession 对象

Sa-Token 是一个轻量级 java 权限认证框架&#xff0c;主要解决登录认证、权限认证、单点登录、OAuth2、微服务网关鉴权 等一系列权限相关问题。 Gitee 开源地址&#xff1a;https://gitee.com/dromara/sa-token 本文将详细介绍 Sa-Token 中的不同 SaSession 对象的区别&#x…

由jar包冲突导致的logback日志不输出

一、前言 最近升级一个老项目&#xff0c;发面日志没有按照预期的生成。 1、resource下面有logback配置但没有生成日志 检查resource目录下&#xff0c;发现有logback.xml配置&#xff0c;但部署在服务器的项目没有按配置生成日志。于是启动本地tomcat发现日志按logback配置…

【创造一个源点去建图】【有等级限制的dijkstra(采用多次dijk方法处理)】昂贵的聘礼

昂贵的聘礼 题意分析 原题链接 题意分析 本题需要注意&#xff1a; 等级限制比较复杂&#xff0c;可以最后考虑本题说 由 B物品 可以换 A物品&#xff0c;想到了B节点可以走到A节点&#xff0c;所以构建图由于我们是要买一个点再开始换的&#xff0c;所以我们可以构建一个源点…

bird 2023 比赛总结

1. 引言 &#x1f4cc; 参加这场比赛的时间&#xff0c;应该是还剩一个月不到了&#xff0c;本来没啥想法&#xff0c;因为在忙一些其它的比赛或者是工作和个人上的烦心事&#xff0c;不过在看过了赛题分析后&#xff0c;整体给我感观是一道挺有意思的学习赛&#xff0c;不仅仅…

ESP32-CAM开发板 使用 sqlite3 数据库存储数据记录

忘记过去&#xff0c;超越自己 ❤️ 博客主页 单片机菜鸟哥&#xff0c;一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建记录 2023-05-29 ❤️❤️ 本篇更新记录 2023-05-29 ❤️&#x1f389; 欢迎关注 &#x1f50e;点赞 &#x1f44d;收藏 ⭐️留言&#x1f4dd;&#x1f64…

Python - Pycharm 配置 autopep8 并设置快捷键

什么是 PEP8 官方&#xff1a;PEP 8 – Style Guide for Python Code | peps.python.org 中文翻译博客&#xff1a;https://www.cnblogs.com/ajianbeyourself/p/4377933.html PEP8 是 Python 官方推出的一套编码的规范&#xff0c;只要代码不符合它的规范&#xff0c;就会有…

iOS unable to find utility “pngcrush“, not a developer tool or in PATH

0x00 奇怪的Bug 很奇怪&#xff0c;还很蛋疼 T_T 前一秒还能 Build 成功&#xff0c;运行 后一秒直接 GG sh -c /Applications/Xcode.app/Contents/Developer/usr/bin/xcodebuild -sdk /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform/Developer/S…

Win10系统更新时不小心中断了无法启动怎么办?

Win10系统更新时不小心中断了无法启动怎么办&#xff1f;有用户使用的Win10系统电脑在进行系统更新的时候&#xff0c;被自己误触了电脑导致更新进程中断了。那么遇到这样的情况我们怎么去进行问题的解决呢&#xff1f;接下来我们一起来看看以下的解决方法吧。 准备工作&#x…

flink写mysql报错Could not retrieve transation read-only status server

事务隔离级别前提下还是报错 SET GLOBAL tx_isolationREAD-COMMITTED; show global variables like wait timeout; 发现mysql是8小时。如果flnk超过8小时没有发送数据&#xff0c;invoke将会导致 mysql主动断开连接&#xff0c;而java侧并无感知。 解决问题&#xff0c;在使…

Benewake(北醒) TFmini-i-485/TF02-i-485/TF03-485 雷达Modbus协议在Python Tkinter模块上实现功能配置的GUI设计

目录 实验目的测试环境Python库需求Benewake(北醒) TF雷达接线示意图库安装说明例程运行展示 实验目的 实现485接口系列雷达Modbus协议在Python下Tkinter模块实现功能配置的GUI设计。 本例程主要功能如下&#xff1a; 1.设备连接&#xff08;已知雷达设备的波特率和站号&#…

C++11 auto类型推导

1.类型推导 C11引入了auto 和 decltype 关键字实现类型推导&#xff0c;通过这两个关键字不仅能方便地获取复杂的类型&#xff0c;而且还能简化书写&#xff0c;提高编码效率。 auto 类型推导的语法和规则 在之前的 C 版本中&#xff0c;auto 关键字用来指明变量的存储类型…