算法基础学习笔记——⑬质数\约数

news2024/11/28 10:46:24

✨博主:命运之光
✨专栏:算法基础学习

在这里插入图片描述

目录

✨质数

🍓(1)质数的判定——试除法

🍓(2)分解质因数——试除法

✨约数

🍓(1)试除法求一个数的所有约数

🍓(2)约数个数

🍓(3)约数之和

🍓(4)欧几里得算法(辗转相除法)


前言:算法学习笔记记录日常分享,需要的看哈O(∩_∩)O,感谢大家的支持!


✨质数

🍓所有大于1的自然数,所有<=1的数既不是质数也不是合数

定义:在大于1的整数中,如果只包含1和本身这两个约数,就被称为质数,或者叫素数

🍓(1)质数的判定——试除法

质数的一个重要性质:如果d能整除n,显然n除d也能整除n

故发现n的所有的约数都是成对出现的(d与n/d都成成对出现的)

所以枚举时可以只枚举每一对当中较小的那一个,枚举:

🍓试除法判定质数:

bool is_prime(int x)
{
     if (x < 2) return false;
     for (int i = 2; i <= x / i; i ++ )
     	if (x % i == 0)
     		return false;
     return true;
}

🍓(2)分解质因数——试除法

从小到大枚举所有数

🍓试除法分解质因数:

void divide(int x)
{
     for (int i = 2; i <= x / i; i ++ )
         if (x % i == 0)
         {
             int s = 0;
             while (x % i == 0) x /= i, s ++ ;
             cout << i << ' ' << s << endl;
         }
     if (x > 1) cout << x << ' ' << 1 << endl;
     cout << endl;
}

🍓

罗列出每个数,依次删除每个数的倍数,剩下的数就是质数,可以对此进行优化,可以不删每一个数的倍数, 可以只删质数的倍数,这样就不用重复删。

🍓质数定理:

优化完的筛法:埃氏筛法

🍓朴素筛法求素数:

int primes[N], cnt; // primes[]存储所有素数
bool st[N]; // st[x]存储x是否被筛掉
void get_primes(int n)
{
     for (int i = 2; i <= n; i ++ )
     {
         if (st[i]) continue;
         primes[cnt ++ ] = i;
         for (int j = i + i; j <= n; j += i)
         	st[j] = true;
     }
}

🍓线性筛法:

把每一个合数用它的某个质因子筛掉

每个数都会被其最小质因子筛掉,而且每个数只有一个最小质因子,故每个数只会被筛一次

🍓线性筛法求素数:

int primes[N], cnt; // primes[]存储所有素数
bool st[N]; // st[x]存储x是否被筛掉
void get_primes(int n)
{
     for (int i = 2; i <= n; i ++ )
     {
         if (!st[i]) primes[cnt ++ ] = i;
         for (int j = 0; primes[j] <= n / i; j ++ )
         {
             st[primes[j] * i] = true;
             if (i % primes[j] == 0) break;
         }
     }
}

约数

约数

🍓(1)试除法求一个数的所有约数

🍓试除法求所有约数:

vector<int> get_divisors(int x)
{
     vector<int> res;
     for (int i = 1; i <= x / i; i ++ )
         if (x % i == 0)
         {
             res.push_back(i);
             if (i != x / i) res.push_back(x / i);
         }
     sort(res.begin(), res.end());
     return res;
}

🍓(2)约数个数

🍓(3)约数之和

约数个数和约数之和:

如果 N = p1^c1 * p2^c2 * ... *pk^ck

约数个数: (c1 + 1) * (c2 + 1) * ... * (ck + 1)

约数之和: (p1^0 + p1^1 + ... + p1^c1) * ... * (pk^0 + pk^1 + ... + pk^ck)

🍓(4)欧几里得算法(辗转相除法)

🍓欧几里得算法:

int gcd(int a, int b)
{
	return b ? gcd(b, a % b) : a; // <表达式1>?<表达式2>:<表达式3>,
} //它的意思是,如果表达式1成立,则输出表达式2的值,否则输出表达式3的值

补充小知识:

两个数的积等于它们最大公约数和它们最小公倍数的

积。公式表示为 :a×b=gcd(a,b)×lcm(a,b)

🍓最小公倍数与最大公约数模板:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/576868.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法基础学习笔记——⑪拓扑排序\最短路

✨博主&#xff1a;命运之光 ✨专栏&#xff1a;算法基础学习 目录 ✨拓扑排序 &#x1f353;朴素dijkstra算法&#xff1a; &#x1f353;堆优化版dijkstra : &#x1f353;Bellman-Ford算法 &#x1f353;spfa 算法&#xff08;队列优化的Bellman-Ford算法&#xff09; …

操作系统(2.8)--线程的实现

目录 线程的实现方式 1.内核支持线程(KST) 2.用户级线程(ULT) 3.组合方式 线程的实现 1.内核支持线程的实现 2.用户级线程的实现 线程的创建和终止 线程的实现方式 1.内核支持线程(KST) 内核支持线程&#xff0c;与进程相同&#xff0c;是在内核的支持下运行的&#x…

二叉树及其相关题目相关的功能的实现

前言&#xff1a;前面我们简单提及了二叉树的相关初级知识和顺序实现二叉树的相关操作详解&#xff0c;并且由完全二叉树延伸到了堆的相关知识&#xff0c;具体详见二叉树初阶和堆的详解&#xff0c;今天&#xff0c;我们展开二叉树的相关 的链式实现操作和经常考察的二叉树的相…

2023 华为 Datacom-HCIE 真题题库 07--含解析

多项选择题 1.[试题编号&#xff1a;190187] &#xff08;多选题&#xff09;如图所示的拓扑采用了VXLAN分布式网关&#xff0c;SW1上的VBDIF10配置了&#xff1a;arp-proxy local enable命令&#xff0c;则以下描述中正确的有哪些项&#xff1f; A、SW1收到PC1发往PC2的报文&…

【搭建私人图床】使用LightPicture开源搭建图片管理系统并远程访问

文章目录 1.前言2. Lightpicture网站搭建2.1. Lightpicture下载和安装2.2. Lightpicture网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar云端设置3.2.Cpolar本地设置 4.公网访问测试5.结语 1.前言 现在的手机越来越先进&#xff0c;功能也越来越多&#xff0c;而手机…

C#,码海拾贝(22)——“全选主元高斯-约当消去法“求解“线性方程组“的C#源代码,《C#数值计算算法编程》源代码升级改进版

using System; namespace Zhou.CSharp.Algorithm { /// <summary> /// 求解线性方程组的类 LEquations /// 原作 周长发 /// 改编 深度混淆 /// </summary> public static partial class LEquations { /// <summary> …

天天被开发怼?4个方法区分bug前后端归属,我再也不背锅了!

“开发都这么不友善吗&#xff1f;” 有朋友跟我说&#xff0c;刚上岗经常分不清bug是前端还是后端&#xff0c;一直需要开发帮忙重新指派&#xff0c;甚至还会被开发拿来吐槽.... 其实不是开发态度不好&#xff0c;而是对于前后端分离的应用&#xff0c;既需要进行功能测试&am…

什么是网络安全?如何让普通人简单的了解网络安全

一、介绍网络安全 可以介绍一下河南郑州的网络安全科技馆。网络安全科技馆设置个人安全、政企安全、社会安全、综合竞技四个主展区&#xff0c;帮大家普及网络安全知识。首先&#xff0c;可以从个人安全展区开始游览&#xff0c;了解我们身边的网络安全&#xff0c;原来网络安…

调幅波解调-二极管峰值包络检波器【Multisim】【高频电子线路】

目录 一、实验目的与要求 二、实验仪器 三、实验内容与测试结果 1.观测输入、输出波形&#xff0c;估算检波效率&#xff08;D1接法不同&#xff0c;分别观测&#xff09; 2.观察惰性失真波形(C1100nF&#xff0c;其他参数保持不变) 3.观测负峰切割失真(ma0.8&#xff0c…

【目标检测实验系列】AutoDL线上GPU服务器租用流程以及如何用Pycharm软件远程连接服务器进行模型训练 (以Pycharm远程训练Yolov5项目为例子 超详细)

目录 1. 文章主要内容2. 租用AutoDL服务器详细教程2.1 注册AutoDL账号&#xff0c;并申请学生认证(学生认证有优惠&#xff0c;如果不是学生可以忽略此点)2.2 算力市场选择GPU&#xff0c;并选择初始化配置环境2.3 控制台参数解析&#xff0c;并使用相关参数登录Xftp(Windows与…

Spring Boot如何实现OAuth2授权?

Spring Boot如何实现OAuth2授权&#xff1f; OAuth2是一种授权框架&#xff0c;用于授权第三方应用程序访问受保护的资源。在Web应用程序中&#xff0c;OAuth2通常用于授权用户访问受保护的API。 在本文中&#xff0c;我们将介绍如何使用Spring Boot实现OAuth2授权。我们将使…

5-python的Number类型

内容提要 主要介绍python中的Number类型&#xff1a; python的类型转换&#xff0c;oct()、hex()、bin()函数的使用。 python的整数表示&#xff1a;十进制、二进制、八进制、十六进制。&#xff08;*&#xff0c;0b&#xff0c;0o&#xff0c;0x&#xff09; python中ASCII码…

springboot+java+ssm教材管理系统87k61

教材管理系统&#xff0c;主要的模块包括查看主页、个人中心、教师管理、学生管理、教材分类管理、教材信息管理、个体预订管理、取消预订管理、集体预订管理、集体取消管理、系统管理等功能。系统中管理员主要是为了安全有效地存储和管理各类信息&#xff0c;还可以对系统进行…

开发微信公众号本地调试【内网穿透】

文章目录 前言1. 配置本地服务器2. 内网穿透2.1 下载安装cpolar内网穿透2.2 创建隧道 3. 测试公网访问4. 固定域名4.1 保留一个二级子域名4.2 配置二级子域名 5. 使用固定二级子域名进行微信开发 转载自cpolar内网穿透的文章&#xff1a;微信公众号开发&#xff1a;对接本地开发…

【QT】windows下OpenSSL的使用

设计需求 在QT端实现对字符串的加密与解密 OpenSSL下载教程 本人采用 Win64OpenSSL-1_1_1t.msi&#xff0c;百度网盘下载链接 链接&#xff1a;https://pan.baidu.com/s/1vg4s_1JmCpa68TMc1F2gMw 提取码&#xff1a;u4js OpenSSL安装参考链接 OpenSSL使用的参考链接 OpenSS使用…

onceperrequestfilter 和 webmvcconfigurer 区别

概述 在使用Spring框架进行Web开发的时候,我们经常会遇到需要对每个请求做一些统一的处理的情况。例如,我们可能需要在每个请求到达Controller之前进行身份验证,或者在每个请求结束后记录请求的日志信息。这时候,我们可以使用两种不同的方式来实现这些功能:onceperreques…

一款免费无广、简单易用的安全软件:火绒安全软件

名人说&#xff1a;往者不可谏&#xff0c;来者犹可追。——语出《论语微子篇》 Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; o(‐&#xff3e;▽&#xff3e;‐)o很高兴你打开了这篇博客&#xff0c;跟着步骤一步步尝试安装吧。✧ 目录…

Linux-基础篇:虚拟机环境搭建

目录 1、linux介绍 2、安装vm和centos 2.1、vmware下载 2.2、Centos 下载地址 3、虚拟机三种网络连接方式 3.1、桥接模式 3.2、NAT模式 3.3、主机模式 4、虚拟机克隆 5、虚拟机快照 6、虚拟机迁移和删除 7、安装vmtools 7.1、vmtools作用 7.2、安装vmtools步骤 …

django+vue+python 协同用过滤电商推荐系统w58n0

现在人们足不出户就可以购物&#xff0c;聊天&#xff0c;消费&#xff0c;我们的生活越来越智能&#xff0c;越来越人性化&#xff0c;随之而来的就是让它更懂你&#xff0c;给你推荐你可能喜欢的东西&#xff0c;这样你就不必再费力去找你喜欢的东西&#xff0c;既节约了你的…

博客系统前端页面代码实现及页面展示(代码版)

hi,大家好,今天为大家带来博客系统的前端代码及页面展示 我们使用VS code 这个编码工具来编写代码 博客系统前端页面分为四个部分 1.博客列表页 2.博客编辑页 3.博客登录页 4.博客详情页 &#x1f367;1.博客列表页 <!DOCTYPE html> <html lang"en"&…