随机森林Proximity实现及应用
- 1 算法
- 1.1 随机森林Proximity简介
- 1.2 RF-GAP
- 1.3 实现代码
- 2 应用
- 2.1 离群点(outlier)检测
- 2.1.1 原理和实现
- 2.1.2 实验结果
- 附录
项目主页:randomforest
C++ implementation of random forests classification, regression, proximity and variable importance.
推荐阅读:Random Forests C++实现:细节,使用与实验
1 算法
1.1 随机森林Proximity简介
随机森林Proximity是一种表示两个样本相似性的度量。Proximity的应用方向包括异常数据检测(Outlier detection)、数据插补(imputation)、可视化等。最初的随机森林Proximity计算方法为,将所有的训练样本经过随机树到达叶子节点,如果两个样本到达同一个叶子节点,那么他们的Proximity值就增加1,最后结果除以树的数量以归一化。这种计算方法非常直接、快速,也被广泛使用。后续学者又提出了几种改进的方法,以提高Proximity估计的准确性,或更加适用于特定应用领域。
1.2 RF-GAP
2023年Jake S. Rhodes等在PAMI上发表了一篇论文《Geometry- and Accuracy-Preserving Random Forest Proximities》(arxiv)。他提出了一种新的随机森林Proximity(RF-GAP)计算方法,从理论上证明了基于该方法的分类/回归预测结果等同于oob分类/回归结果,并且给出了实验验证结果。2023年还能在PAMI上发表纯粹讨论随机森林的文章,且内容又是涉及RF算法中一个比较冷门的方面,说明这个工作是非常扎实的。
以下简要介绍下该论文的思想,文中Proximity(RF-GAP)的计算公式如下:
P
(
i
,
j
)
=
1
∣
T
o
o
b
(
i
)
∣
∑
t
∈
T
o
o
b
(
i
)
∣
{
j
∣
i
n
b
a
g
t
l
e
a
f
(
i
)
}
∣
∣
{
i
n
b
a
g
t
l
e
a
f
(
i
)
}
∣
P(i,j)=\frac{1}{\lvert T_{oob}(i) \rvert} \sum_{t\in T_{oob}(i)} \frac {|\{j |inbag_{t}^{leaf}(i)\}|} {\lvert\{inbag_{t}^{leaf}(i)\}\rvert}
P(i,j)=∣Toob(i)∣1t∈Toob(i)∑∣{inbagtleaf(i)}∣∣{j∣inbagtleaf(i)}∣
上述公式是根据我自己理解重写的,也可以参考论文中的公式,符号和表达式简要说明如下:
-
∣ ⋅ ∣ \lvert {·}\rvert ∣⋅∣:表示集合中元素的数量;
-
P ( i , j ) P(i,j) P(i,j): 样本 i i i与 j j j的Proximity值;
-
T o o b ( i ) T_{oob}(i) Toob(i): 随机树的集合,对于这些树样本 i i i是out-of-bag(oob)数据;
-
{ i n b a g t l e a f ( i ) } \{inbag_{t}^{leaf}(i)\} {inbagtleaf(i)}: oob样本 i i i落入树 t t t的某个叶子节点,该节点上所有训练样本(in-bag)的集合;
-
{ j ∣ i n b a g t l e a f ( i ) } \{j |inbag_{t}^{leaf}(i)\} {j∣inbagtleaf(i)}: 上述叶子节点的in-bag样本中样本 j j j的集合,有可能是0, 也有可能 ≥ 1 \ge1 ≥1,因为每棵树的训练样本是从原始数据集中有放回抽样得到的(bagging),所以叶子节点上的样本 j j j数量可能大于1。
-
需要说明的是, P ( i , j ) ≠ P ( j , i ) P(i,j)\ne P(j,i) P(i,j)=P(j,i), P ( i , i ) = 0 P(i,i)=0 P(i,i)=0, ∑ j P ( i , j ) = 1 \sum_{j}P(i,j)=1 ∑jP(i,j)=1。
1.3 实现代码
上述RF-GAP已经在我的randomforest上实现,分类与回归代码类似,以下仅贴出分类森林RF-GAP计算代码。
int ClassificationForestGAPProximity(LoquatCForest* forest, float** data, const int index_i, float*& proximities)
{
if (NULL != proximities)
delete[] proximities;
proximities = new float[forest->RFinfo.datainfo.samples_num];
memset(proximities, 0, sizeof(float) * forest->RFinfo.datainfo.samples_num);
const int ntrees = forest->RFinfo.ntrees;
int oobtree_num = 0;
for (int t = 0; t < ntrees; t++)
{
//where the i-th sample is oob
const struct LoquatCTreeStruct* tree = forest->loquatTrees[t];
bool i_oob = false;
for (int n = 0; n < tree->outofbag_samples_num; n++)
{
if (index_i == tree->outofbag_samples_index[n])
{
i_oob = true;
break;
}
}
if (false == i_oob)
continue;
oobtree_num++;
map<int, int> index_multicity;
const struct LoquatCTreeNode* leaf_i = GetArrivedLeafNode(forest, t, data[index_i]);
if (leaf_i->samples_index != NULL)
{
for (int n=0; n<leaf_i->arrival_samples_num; n++)
{
if (index_multicity.find(leaf_i->samples_index[n]) == index_multicity.end())
index_multicity.emplace(leaf_i->samples_index[n], 1);
else
index_multicity[leaf_i->samples_index[n]]++;
}
}else
{
// if forest did not store sample index arrrived at the leaf node, each in bag sample has to be tested
for (int n = 0; n < tree->inbag_samples_num; n++)
{
const int j = tree->inbag_samples_index[n];
const struct LoquatCTreeNode* leaf_j = GetArrivedLeafNode(forest, t, data[j]);
if (leaf_i == leaf_j)
{
if (index_multicity.find(j) == index_multicity.end())
index_multicity.emplace(j, 1);
else
index_multicity[j]++;
}
}
}
int M = 0;
for (map<int, int>::iterator it = index_multicity.begin(); it != index_multicity.end(); it++)
{
M += it->second;
}
if (0 == M)
continue;
for (map<int, int>::iterator it = index_multicity.begin(); it != index_multicity.end(); it++)
proximities[it->first] += it->second*1.0f/M;
}
if (0 == oobtree_num)
return -1;
for (int j = 0; j < forest->RFinfo.datainfo.samples_num; j++)
proximities[j] = proximities[j] / oobtree_num;
return 1;
}
2 应用
通过计算随机森林Proximity挖掘两个样本之间的相似度,可以应用于数据可视化、离群点检测、数据插补等场景。相比其他随机森林Proximity,据论文中描述RF-GAP在这些应用上展现了更好的效果。
2.1 离群点(outlier)检测
2.1.1 原理和实现
对于分类问题,离群点可以这样定义:该样本的outlier measure score显著地大于类内其他样本的值。这些异常样本可能与其他类别的样本相似,或者与所有类别样本都不相似。异常样本的存在会影响分类和回归算法的训练。随机森林离群点检测可以分为基于特征的方法和基于proximity的方法,前者比如Isolation Forest,基于RF-GAP的离群点检测方法属于后者。步骤如下:
- 对于样本 i i i,计算raw outlier measure score: s c o r e ( i ) = n ∑ j ∈ c l a s s ( i ) P 2 ( i , j ) score(i)=\frac{n}{\sum_{j\in class(i)} P^2(i,j)} score(i)=∑j∈class(i)P2(i,j)n
- 计算类内raw_score的中值 m c = m e d i a n { s c o r e ( i ) ∣ c l a s s ( i ) ∈ c } m_c=median\{score(i)|class(i)\in c\} mc=median{score(i)∣class(i)∈c},类内样本raw score与中值绝对差的均值 d e v c = 1 N c ∑ c l a s s ( i ) ∈ c ∣ s c o r e ( i ) − m c ∣ dev_c=\frac{1}{N_c}\sum_{class(i)\in c}|score(i)-m_c| devc=Nc1∑class(i)∈c∣score(i)−mc∣
- 计算得到规范化的raw outlier measure score: s c o r e ( i ) ← m a x ( s c o r e ( i ) − m c d e v c , 0 ) score(i)\gets max(\frac{score(i)-m_c}{dev_c}, 0) score(i)←max(devcscore(i)−mc,0)
在我的randomforest算法中实现计算outlier measure score的代码如下,过程细节借鉴了Leo Breiman的RF实现(Leo Breiman大神的代码是Fortran写的,关于outlier measure的计算在函数locateout中)。
int RawOutlierMeasure(LoquatCForest* loquatForest, float** data, int* label, float*& raw_score)
{
if (NULL != raw_score)
delete [] raw_score;
int rv=1;
const int samples_num = loquatForest->RFinfo.datainfo.samples_num;
const int class_num = loquatForest->RFinfo.datainfo.classes_num;
raw_score = new float [samples_num];
memset(raw_score, 0, sizeof(float)*samples_num);
// 1. 计算raw outlier measure score
float *proximities = NULL;
for (int i=0; i<samples_num; i++)
{
ClassificationForestGAPProximity(loquatForest, data, i, proximities /*OUT*/);
float proximity2_sum = 0.f;
for(int j=0; j<samples_num; j++)
{
if (label[j] != label[i] || j == i)
continue;
// within class
proximity2_sum += proximities[j] * proximities[j];
}
raw_score[i] = samples_num / (proximity2_sum+1e-5);
delete [] proximities;
proximities = NULL;
}
// 2. 计算类内raw_score的中值,类内样本raw score与中值绝对差的均值
float *dev = new float[class_num];
float *median = new float[class_num];
memset(dev, 0, sizeof(float)*class_num);
memset(median, 0, sizeof(float)*class_num);
for (int j=0; j<class_num; j++)
{
vector<float> raw_score_class_j;
for (int i=0; i<samples_num; i++)
{
if (label[i] == j)
raw_score_class_j.push_back(raw_score[i]);
}
std::sort(raw_score_class_j.begin(), raw_score_class_j.end());
const int sample_num_j = raw_score_class_j.size();
if (0 == sample_num_j)
{
rv = 0;
dev[j] = 1.f;
median[j] = 1.f;
continue;
}
if (sample_num_j%2 == 1)
median[j] = raw_score_class_j[sample_num_j/2];
else
median[j] = 0.5f*(raw_score_class_j[sample_num_j/2] + raw_score_class_j[sample_num_j/2-1]);
for (vector<float>::iterator it=raw_score_class_j.begin(); it != raw_score_class_j.end(); it++)
dev[j] += abs(*it - median[j]);
dev[j] = dev[j] / sample_num_j;
}
// 3. 计算得到规范化的raw outlier measure score
for( int i=0, lb=0; i<samples_num; i++)
{
lb = label[i];
raw_score[i] = RF_MAX( (raw_score[i] - median[lb])/(dev[lb]+1e-5), 0.0);
}
delete [] dev;
delete [] median;
return rv;
}
2.1.2 实验结果
使用mnist手写字符识别数据集训练随机森林分类器,样本数60000,特征数780。RF参数为:随机树
T
=
200
T=200
T=200,分类候选特征数
780
\sqrt{780}
780,节点最小样本数5,最大树深度40。
计算outlier measure的核心是计算proximities–
P
(
i
,
j
)
P(i,j)
P(i,j),当训练RF时叶子节点保存了落入其中的in-bag样本信息(至少有样本在训练集中的序号),那么初略估计RF-GAP算法的复杂度为
O
(
T
∗
N
)
O(T*N)
O(T∗N),
T
T
T与
N
N
N分别是随机树和训练集样本的数量。RF-GAP文章最后作者提到这个算法比较适用于样本在几千范围的数据集,下一步工作是改进算法以适用于更大的数据集。
计算所有样本"outlier measure score",其中部分类别样本的数值在下面图中展示(按数值升序),横坐标是样本,纵坐标是样本对应的"outlier measure score"。其中,类别4和9(即数字4–子图3,数字9–子图4)的极少数样本显著异常,可以对应查看下文中的离群样本图像,更加直观。
检测mnist手写数字识别数据集上离群样本,选取了几个类别中最大的raw outlier measure score对应的图像,从图像上来看确实较难辨认。比如数字4的离群样本,看起来是数字7,验证过确实标注类别4,在原训练集中的序号是59915 (序号从0开始),raw score 超过200,与类内其他样本有显著区别。
随机选取了一些raw outlier measure score为0的样本图像(RF认为类内相似度较高),示例如下,确实是一些正常可辨认的手写数字。
备注:mnist有几种训练集,对应特征有784维(对应图像28x28)和780维,本文选用的特征是780维。为了显示,在780维图像头部补4个0,使每个图像从780扩充到784,导致字符都有点偏右。
附录
使用我实现的randomforest算法进行RF训练+异常样本检测(计算样本的raw outlier measure score)的代码如下:
int main()
{
// read training samples if necessary
char filename[500] = "/to/direction/dataset/train-data.txt"
float** data = NULL;
int* label = NULL;
Dataset_info_C datainfo;
int rv = InitalClassificationDataMatrixFormFile2(filename, data/*OUT*/, label/*OUT*/, datainfo/*OUT*/);
// check the return value
// ... ...
// setting random forests parameters
RandomCForests_info rfinfo;
rfinfo.datainfo = datainfo;
rfinfo.maxdepth = 40;
rfinfo.ntrees = 200;
rfinfo.mvariables = (int)sqrtf(datainfo.variables_num);
rfinfo.minsamplessplit = 5;
rfinfo.randomness = 1;
// train forest
LoquatCForest* loquatCForest = NULL;
rv = TrainRandomForestClassifier(data, label, rfinfo, loquatCForest /*OUT*/, 20);
// check the return value
// ... ...
//outlier measurement//
float *raw_score=NULL;
RawOutlierMeasure2(loquatCForest, data, label, raw_score);
// raw_socre -- outlier measurements
// ... ...
delete [] raw_score;
/outlier measurement//
// clear the memory allocated for the entire forest
ReleaseClassificationForest(&loquatCForest);
// release money: data, label
for (int i = 0; i < datainfo.samples_num; i++)
delete[] data[i];
delete[] data;
delete[] label;
return 0;
}