文章目录
- 题目描述
- 法一:动态规划
题目描述
法一:动态规划
问题简化:一棵二叉树,树上的每个点都有对应的权值,每个点有两种状态(选中和不选中),问在不能同时选中有父子关系的点的情况下,能选中的点的最大权值和是多少。
- 可以用 f(o) 表示选择 o 节点的情况下,o 节点的子树上被选择的节点的最大权值和;g(o) 表示不选择 o 节点的情况下,o 节点的子树上被选择的节点的最大权值和;l 和 r 代表 o 的左右孩子。
- 当 o 被选中时,o 的左右孩子都不能被选中,故 o 被选中情况下子树上被选中点的最大权值和为 l 和 r 不被选中的最大权值和相加,即 f ( o ) = g ( l ) + g ( r ) f(o)=g(l)+g(r) f(o)=g(l)+g(r)。
- 当 o 不被选中时,o 的左右孩子可以被选中,也可以不被选中。对于 o 的某个具体的孩子 x,它对 o 的贡献是 x 被选中和不被选中情况下权值和的较大值。故 g ( o ) = m a x ( f ( l ) , g ( l ) ) + m a x ( f ( r ) , g ( r ) ) g(o)=max(f(l),g(l))+max(f(r),g(r)) g(o)=max(f(l),g(l))+max(f(r),g(r)) 。
可以用哈希表来存 f 和 g 的函数值,用深度优先搜索的办法后序遍历这棵二叉树,我们就可以得到每一个节点的 f 和 g。根节点的 f 和 g 的最大值就是我们要找的答案
代码
class Solution {
public:
unordered_map <TreeNode*, int> f, g;
void dfs(TreeNode* node) {
if (!node) {
return;
}
dfs(node->left);
dfs(node->right);
f[node] = node->val + g[node->left] + g[node->right];
g[node] = max(f[node->left], g[node->left]) + max(f[node->right], g[node->right]);
}
int rob(TreeNode* root) {
dfs(root);
return max(f[root], g[root]);
}
};
复杂度分析
时间复杂度:O(n)
空间复杂度:O(n)