k8s pv pvc的介绍|动态存储|静态存储

news2025/1/23 9:30:05

k8s pv pvc的介绍|动态存储|静态存储

  • 1 emptyDir存储卷
  • 2 hostPath存储卷
  • 3 nfs共享存储卷
  • 4 PVC 和 PV
    • NFS使用PV和PVC
  • 4 搭建 StorageClass + NFS,实现 NFS 的动态 PV 创建

1 emptyDir存储卷

当Pod被分配给节点时,首先创建emptyDir卷,并且只要该Pod在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod 中的容器可以读取和写入emptyDir卷中的相同文件,尽管该卷可以挂载到每个容器中的相同或不同路径上。当出于任何原因从节点中删除 Pod 时,emptyDir中的数据将被永久删除。

mkdir /opt/volumes
cd /opt/volumes

vim pod-emptydir.yaml 
apiVersion: v1
kind: Pod
metadata:
  name: pod-emptydir
  labels:
    app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    volumeMounts:
    - name: ck
      mountPath: /usr/share/nginx/html/
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    volumeMounts:
    - name: ck
      mountPath: /data/
    command:
    - /bin/sh
    - -c
    - while true;do echo $(date) >> /data/index.html;sleep 3;done
  volumes:
  - name: ck
    emptyDir: {}

	
	
kubectl apply -f pod-emptydir.yaml

kubectl get pods -o wide

2 在上面定义了2个容器,其中一个容器是输入日期到index.html中,然后验证访问nginx的html是否可以获取日期。以验证两个容器之间挂载的emptyDir实现共享。
curl 10.244.1.5

请添加图片描述
请添加图片描述

2 hostPath存储卷

hostPath卷将 node 节点的文件系统中的文件或目录挂载到集群中。
hostPath可以实现持久存储,但是在node节点故障时,也会导致数据的丢失。

1 在 node01 节点上创建挂载目录
mkdir -p /data/pod/volume1
echo 'node01.kgc.com' > /data/pod/volume1/index.html

2 在 node02 节点上创建挂载目录
mkdir -p /data/pod/volume1
echo 'node02.kgc.com' > /data/pod/volume1/index.html

3 创建 Pod 资源
vim pod-hostpath.yaml

kubectl apply -f pod-hostpath.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-hostpath
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
      readOnly: false
  volumes:
  - name: html
    hostPath:
      path: /data/pod/volume1
      type: Directory
4  访问测试
kubectl get pods -o wide

5 curl

请添加图片描述
请添加图片描述

3 nfs共享存储卷

1 在stor01节点上安装nfs,并配置nfs服务
mkdir /data/volumes -p
chmod 777 /data/volumes

vim /etc/exports
/data/volumes 192.168.10.0/24(rw,no_root_squash)

systemctl start rpcbind
systemctl start nfs

showmount -e
Export list for stor01:
/data/volumes 192.168.10.0/24

2 在node01和node02上操作
实现ip映射
echo '192.168.10.40 stor01' >> /etc/hosts

3  master节点操作
vim  pod-nfs-vol.yaml

apiVersion: v1
kind: Pod
metadata:
  name: pod-vol-nfs
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    volumeMounts:
    - name: html-nfs
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html-nfs
      nfs:
        server: stor01
        path: /data/volumes


kubectl apply -f pod-nfs-vol.yaml

请添加图片描述
请添加图片描述
请添加图片描述

1 在nfs服务器上创建index.html
cd /data/volumes
vim index.html
<h1> nfs stor01</h1>

2 master节点操作
curl 

3 kubectl delete -f pod-nfs-vol.yaml   #删除nfs相关pod,再重新创建,可以得到数据的持久化存储


4 kubectl apply -f pod-nfs-vol.yaml

5 在curl一边发现内容还在,实现了持久化存储

请添加图片描述

4 PVC 和 PV

PV 全称叫做 Persistent Volume,持久化存储卷。它是用来描述或者说用来定义一个存储卷的,这个通常都是由运维工程师来定义。

PVC 的全称是 Persistent Volume Claim,是持久化存储的请求。它是用来描述希望使用什么样的或者说是满足什么条件的 PV 存储。

PVC 的使用逻辑:在 Pod 中定义一个存储卷(该存储卷类型为 PVC),定义的时候直接指定大小,PVC 必须与对应的 PV 建立关系,PVC 会根据配置的定义去 PV 申请,而 PV 是由存储空间创建出来的。PV 和 PVC 是 Kubernetes 抽象出来的一种存储资源。

上面介绍的PV和PVC模式是需要运维人员先创建好PV,然后开发人员定义好PVC进行一对一的Bond,但是如果PVC请求成千上万,那么就需要创建成千上万的PV,对于运维人员来说维护成本很高,Kubernetes提供一种自动创建PV的机制,叫StorageClass,它的作用就是创建PV的模板。

创建 StorageClass 需要定义 PV 的属性,比如存储类型、大小等;另外创建这种 PV 需要用到的存储插件,比如 Ceph 等。 有了这两部分信息,Kubernetes 就能够根据用户提交的 PVC,找到对应的 StorageClass,然后 Kubernetes 就会调用 StorageClass 声明的存储插件,自动创建需要的 PV 并进行绑定。

PV是集群中的资源。 PVC是对这些资源的请求,也是对资源的索引检查。

PV和PVC之间的相互作用遵循这个生命周期:
Provisioning(配置)---> Binding(绑定)---> Using(使用)---> Releasing(释放) ---> Recycling(回收)

●Provisioning,即 PV 的创建,可以直接创建 PV(静态方式),也可以使用 StorageClass 动态创建
●Binding,将 PV 分配给 PVC
●Using,Pod 通过 PVC 使用该 Volume,并可以通过准入控制StorageProtection(1.9及以前版本为PVCProtection) 阻止删除正在使用的 PVC
●Releasing,Pod 释放 Volume 并删除 PVC
●Reclaiming,回收 PV,可以保留 PV 以便下次使用,也可以直接从云存储中删除

根据这 5 个阶段,PV 的状态有以下 4 种:
●Available(可用):表示可用状态,还未被任何 PVC 绑定
●Bound(已绑定):表示 PV 已经绑定到 PVC
●Released(已释放):表示 PVC 被删掉,但是资源尚未被集群回收
●Failed(失败):表示该 PV 的自动回收失败

//一个PV从创建到销毁的具体流程如下:
1、一个PV创建完后状态会变成Available,等待被PVC绑定。
2、一旦被PVC邦定,PV的状态会变成Bound,就可以被定义了相应PVC的Pod使用。
3、Pod使用完后会释放PV,PV的状态变成Released。
4、变成Released的PV会根据定义的回收策略做相应的回收工作。有三种回收策略,Retain、Delete和Recycle。Retain就是保留现场,K8S集群什么也不做,等待用户手动去处理PV里的数据,处理完后,再手动删除PV。Delete策略,K8S会自动删除该PV及里面的数据。Recycle方式,K8S会将PV里的数据删除,然后把PV的状态变成Available,又可以被新的PVC绑定使用。

kubectl explain pv #查看pv的定义方式
FIELDS:
apiVersion: v1
kind: PersistentVolume
metadata: #由于 PV 是集群级别的资源,即 PV 可以跨 namespace 使用,所以 PV 的 metadata 中不用配置 namespace
name:
spec

kubectl explain pv.spec #查看pv定义的规格
spec:
nfs:(定义存储类型)
path:(定义挂载卷路径)
server:(定义服务器名称)
accessModes:(定义访问模型,有以下三种访问模型,以列表的方式存在,也就是说可以定义多个访问模式)
- ReadWriteOnce #(RWO)存储可读可写,但只支持被单个 Pod 挂载
- ReadOnlyMany #(ROX)存储可以以只读的方式被多个 Pod 挂载
- ReadWriteMany #(RWX)存储可以以读写的方式被多个 Pod 共享 注:官网
#nfs 支持全部三种;iSCSI 不支持 ReadWriteMany(iSCSI 就是在 IP 网络上运行 SCSI 协议的一种网络存储技术);HostPath 不支持 ReadOnlyMany 和 ReadWriteMany。
capacity:(定义存储能力,一般用于设置存储空间)
storage: 2Gi (指定大小)
storageClassName: (自定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)
persistentVolumeReclaimPolicy: Retain #回收策略(Retain/Delete/Recycle)
#Retain(保留):当删除与之绑定的PVC时候,这个PV被标记为released(PVC与PV解绑但还没有执行回收策略)且之前的数据依然保存在该PV上,但是该PV不可用,需要手动来处理这些数据并删除该PV。
#Delete(删除):删除与PV相连的后端存储资源(只有 AWS EBS, GCE PD, Azure Disk 和 Cinder 支持)
#Recycle(回收):删除数据,效果相当于执行了 rm -rf /thevolume/* (只有 NFS 和 HostPath 支持)

kubectl explain pvc #查看PVC的定义方式
KIND: PersistentVolumeClaim
VERSION: v1
FIELDS:
apiVersion
kind
metadata
spec

#PV和PVC中的spec关键字段要匹配,比如存储(storage)大小、访问模式(accessModes)、存储类名称(storageClassName)
kubectl explain pvc.spec
spec:
accessModes: (定义访问模式,必须是PV的访问模式的子集)
resources:
requests:
storage: (定义申请资源的大小)
storageClassName: (定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)

NFS使用PV和PVC

1、配置nfs存储
mkdir v{1,2,3,4,5}

vim /etc/exports
/data/volumes/v1 192.168.10.0/24(rw,no_root_squash)
/data/volumes/v2 192.168.10.0/24(rw,no_root_squash)
/data/volumes/v3 192.168.10.0/24(rw,no_root_squash)
/data/volumes/v4 192.168.10.0/24(rw,no_root_squash)
/data/volumes/v5 192.168.10.0/24(rw,no_root_squash)

exportfs -arv

showmount -e

请添加图片描述
2、定义PV

1  这里定义5个PV,并且定义挂载的路径以及访问模式,还有PV划分的大小。
vim pv-demo.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv001
  labels:
    name: pv001
spec:
  nfs:
    path: /data/volumes/v1
    server: stor01                                                                                                                                                                                                                   
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 1Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv002
  labels:
    name: pv002
spec:
  nfs:
    path: /data/volumes/v2
    server: stor01
  accessModes: ["ReadWriteOnce"]
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv003
  labels:
    name: pv003
spec:
  nfs:
    path: /data/volumes/v3
    server: stor01
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv004
  labels:
    name: pv004
spec:
  nfs:
    path: /data/volumes/v4
    server: stor01
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 4Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv005
  labels:
    name: pv005
spec:
  nfs:
    path: /data/volumes/v5
    server: stor01
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 5Gi

2 kubectl apply -f pv-demo.yaml

3 kubectl get pv

请添加图片描述

1  定义PVC
//这里定义了pvc的访问模式为多路读写,该访问模式必须在前面pv定义的访问模式之中。定义PVC申请的大小为2Gi,此时PVC会自动去匹配多路读写且大小为2Gi的PV,匹配成功获取PVC的状态即为Bound
vim pod-vol-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc
  namespace: default
spec:
  accessModes: ["ReadWriteMany"]
  resources:
    requests:
      storage: 2Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: pod-pvc
spec:
  volumes:
    - name: pvc-storage
    persistentVolumeClaim:
      clainName: mypvc
  containers:
    - name: myapp
      image: nginx
      ports:
        - containerPort: 80
          name: http
      volumeMounts:
        - mountPath: /usr/share/nginx/html
          name: pvc-storage



2  kubectl apply -f pod-vol-pvc.yaml

3  kubectl get pv

4 kubectl get pvc

请添加图片描述

1  测试访问
在存储服务器上stort上创建index.html,并写入数据,通过访问Pod进行查看,可以获取到相应的页面。
cd /data/volumes/v3/
  echo "welcome to use pv3" > index.html  

2  在master上获取pod信息并验证
kubectl get pods -o wide

curl pvc的ip

请添加图片描述
请添加图片描述

注意!!master节点要添加pv的ip映射,不然验证不了效果。

4 搭建 StorageClass + NFS,实现 NFS 的动态 PV 创建

Kubernetes 本身支持的动态 PV 创建不包括 NFS,所以需要使用外部存储卷插件分配PV。详见:https://kubernetes.io/zh/docs/concepts/storage/storage-classes/

卷插件称为 Provisioner(存储分配器),NFS 使用的是 nfs-client,这个外部卷插件会使用已经配置好的 NFS 服务器自动创建 PV。
Provisioner:用于指定 Volume 插件的类型,包括内置插件(如 kubernetes.io/aws-ebs)和外部插件(如 external-storage 提供的 ceph.com/cephfs)。

1、在stor01节点上安装nfs,并配置nfs服务


mkdir /opt/k8s
chmod 777 /opt/k8s/

vim /etc/exports
/opt/k8s 192.168.10.0/24(rw,no_root_squash,sync)

systemctl restart nfs

请添加图片描述

1 创建 Serice Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

vim nfs-client-rbac.yaml
#创建 Service Account 账户,用来管理 NFS Provisioner 在 k8s 集群中运行的权限
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
---
#创建集群角色
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: nfs-client-provisioner-clusterrole
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["list", "watch", "create", "update", "patch"]
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["create", "delete", "get", "list", "watch", "patch", "update"]
---
#集群角色绑定
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: nfs-client-provisioner-clusterrolebinding
subjects:
- kind: ServiceAccount
  name: nfs-client-provisioner
  namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-clusterrole
  apiGroup: rbac.authorization.k8s.io


2 kubectl apply -f nfs-client-rbac.yaml

3 kubectl get sa

在这里插入图片描述
请添加图片描述

使用 Deployment 来创建 NFS Provisioner
NFS Provisione(即 nfs-client),有两个功能:一个是在 NFS 共享目录下创建挂载点(volume),另一个则是将 PV 与 NFS 的挂载点建立关联。

#由于 1.20 版本启用了 selfLink,所以 k8s 1.20+ 版本通过 nfs provisioner 动态生成pv会报错,解决方法如下:
vim /etc/kubernetes/manifests/kube-apiserver.yaml
spec:
  containers:
  - command:
    - kube-apiserver
    - --feature-gates=RemoveSelfLink=false       #添加这一行

2  kubectl apply -f /etc/kubernetes/manifests/kube-apiserver.yaml

3  kubectl delete pods kube-apiserver -n kube-system 

4  kubectl get pods -n kube-system | grep apiserver

请添加图片描述
请添加图片描述

1  创建 NFS Provisioner
vim nfs-client-provisioner.yaml
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nfs-client-provisioner
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner   	  #指定Service Account账户
      containers:
        - name: nfs-client-provisioner
          image: quay.io/external_storage/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: nfs-storage       #配置provisioner的Name,确保该名称与StorageClass资源中的provisioner名称保持一致
            - name: NFS_SERVER
              value: stor01           #配置绑定的nfs服务器
            - name: NFS_PATH
              value: /opt/k8s          #配置绑定的nfs服务器目录
      volumes:              #申明nfs数据卷
        - name: nfs-client-root
          nfs:
            server: stor01
            path: /opt/k8s
	
	
2 kubectl apply -f nfs-client-provisioner.yaml 

3 kubectl get pod

请添加图片描述

1 创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

vim nfs-client-storageclass.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs-client-storageclass
provisioner: nfs-storage     #这里的名称要和provisioner配置文件中的环境变量PROVISIONER_NAME保持一致
parameters:
  archiveOnDelete: "false"   #false表示在删除PVC时不会对数据进行存档,即删除数据
  
  
kubectl apply -f nfs-client-storageclass.yaml

kubectl get storageclass

请添加图片描述

请添加图片描述

1 创建 PVC 和 Pod 测试

vim test-pvc-pod.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: test-nfs-pvc
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: nfs-client-PROVISIONER    #关联StorageClass对象
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: test-storageclass-pod
spec:
  containers:
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    command:
    - "/bin/sh"
    - "-c"
    args:
    - "sleep 3600"
    volumeMounts:
    - name: nfs-pvc
      mountPath: /mnt
  restartPolicy: Never
  volumes:
  - name: nfs-pvc
    persistentVolumeClaim:
      claimName: test-nfs-pvc      #与PVC名称保持一致
	  
	  
2 kubectl apply -f test-pvc-pod.yaml


3PVC 通过 StorageClass 自动申请到空间
kubectl get pvc

4 查看 NFS 服务器上是否生成对应的目录,自动创建的 PV 会以 ${namespace}-${pvcName}-${pvName} 的目录格式放到 NFS 服务器上
ls /opt/k8s/


5 进入 Pod 在挂载目录 /mnt 下写一个文件,然后查看 NFS 服务器上是否存在该文件
kubectl exec -it test-storageclass-pod sh
/ # cd /mnt/
/mnt # echo 'this is test file' > test.txt

6 发现 NFS 服务器上存在,说明验证成功
cat /opt/k8s/test.txt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/563788.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

FPGA—可乐机拓展训练题(状态机)

题目&#xff1a;以可乐机为背景&#xff0c;一瓶可乐的价格还是 2.5 元。用按键控制投币&#xff08;加入按键消抖功能&#xff09;&#xff0c;可以投 0.5 元硬币和 1 元硬币&#xff0c;投入 0.5 元后亮一个灯&#xff0c;投入 1 元后亮 2 个灯&#xff0c;投入 1.5 元后亮 …

【统计模型】学生课程类型选择影响因素分析

目录 学生课程类型选择影响因素分析 一、研究目的 二、数据来源和相关说明 三、描述性分析 3.1 样本描述 3.2 样本可视化 3.2.1 直方图 3.2.2 列联表 3.2.3 箱线图与折线图 3.2.4 相关性热力图 四、数学建模 4.1 无序多分类logistic回归模型 4.1.1 无序多分类logist…

STM32F030C8T6最小系统板和流水灯(原理图和PCB)

STM32F030C8T6最小系统板和流水灯。 嵌入式课的课程设计&#xff0c;要做个流水灯&#xff0c;我就顺便画个最小系统板&#xff0c;开源出来了&#xff0c;各位大佬指点指点&#xff0c;有哪里需要优化改进的。 那个WS2812的RGB灯用错引脚了&#xff0c;所以没法用PWM来控制&…

MQTT GUI 客户端 可视化管理工具

MQTT GUI 客户端 可视化管理工具 介绍 多标签页管理&#xff0c;同时打开多个连接提供原生性能&#xff0c;并且比使用 Electron 等 Web 技术开发的同等应用程序消耗的资源少得多支持 MQTT v5.0 以及 MQTT v3.1.1 协议&#xff0c;支持通过 WebSocket 连接至 MQTT 服务器以树…

数字信号处理7

昨天着重就是离散时间系统的复习&#xff0c;包括离散时间系统的分类有哪些&#xff0c;是根据什么进行分类的&#xff0c;要搞清楚&#xff0c;LTI系统是一个什么样的系统&#xff0c;以及卷积的操作&#xff0c;因果LTI等&#xff0c;回顾完这些之后&#xff0c;就开始了今天…

Python面向对象编程详细解析(都带举例说明!)

前言 Python面向对象编程&#xff08;Object-Oriented Programming&#xff0c;简称OOP&#xff09;是一种编程范式&#xff0c;它将数据和操作数据的方法封装在一起&#xff0c;形成一个对象。 Python中的面向对象编程包括以下内容&#xff1a; 目录点击对应章节可直接跳转…

数据治理项目易失败?企业数据治理的解决思路在这里

据Gartner 的一项调查显示&#xff0c;我国超过90%的数据治理项目都失败了。大家的感受也是如此&#xff1a;数据治理的项目不好落地&#xff0c;数据治理项目实施起来从理论到实践有一条巨大的鸿沟很难跨越。 失败的原因各种各样&#xff0c;总结起来大概有4类&#xff1a; …

编译原理个人作业--第六章——基于 编译原理 国防工业出版社 第三版

2 对表达式((a)(b)) (1) 按照表6.4属性文法构造抽象语法树 (2) 按6.17翻译模式构造表达式抽象语法树 5(1) 下列文法对整型常数、实型常熟世家加法运算符 生成表达式&#xff0c;当两个整型数相加&#xff0c;结果为整形&#xff0c;否则结果为实型 E → E T ∣ T E\r…

软件测试面试题

一、描述 TCP/IP 协议的层次结构&#xff0c;以及每一层中重要协议 TCP/IP&#xff08;Transmission Control Protocol/Internet Protocol&#xff09;是互联网的核心协议套件&#xff0c;它定义了在网络中进行通信的规则和标准。TCP/IP协议栈按照层次结构划分&#xff0c;每一…

【DataTable.js】DataTable基础应用

一、简介 DataTables是一个功能强大的Javascript库&#xff0c;用于向HTML表中添加交互特性&#xff0c;虽然简单性是整个项目的核心设计原则&#xff0c;但一开始可能会让人望而生畏。然而&#xff0c;采取这些第一步&#xff0c;让DataTables在你的网站上运行实际上是相当直…

测试——四元数绕轴旋转

float angle 40;Vector3 v rotatePoint.transform.position;Debug.Log("旋转向量 " v "__自身 " cube.transform.rotation);v.Normalize();Debug.Log(v);float f angle * Mathf.Deg2Rad / 2;float sinHalfAngle Mathf.Sin(f);float cosHalfAngle M…

智慧梁场3D建模

智慧梁场3D建模&#xff1a;数字化革命下的新起点 ​ 随着科技的迅猛发展&#xff0c;数字化已经成为了现代工业生产的必然趋势。作为传统工业的核心产业&#xff0c;建筑行业也在不断地探索数字化变革的新路径。而“智慧梁场3D建模”便是其中的一项杰出实践。 ​ 梁场是建筑…

FreeRTOS:系统内核控制函数

目录 前言一、内核控制函数预览二、内核控制函数详解2.1强制上下文切换宏2.2临界区2.3可屏蔽中断2.4调度器2.5调整系统节拍 前言 FreeRTOS 中有一些函数只供系统内核使用&#xff0c;用户应用程序一般不允许使用&#xff0c;这些 API 函 数就是系统内核控制函数。内核控制的一…

【iOS】—— iOS中的相关锁

文章目录 自旋锁1.OSSpinLock2.os_unfair_lock3.atomic 互斥锁pthread_mutexsynchronizedobjc_sync_enterobjc_sync_exit注意事项 NSLockNSRecursiveLock信号量条件锁NSConditionNSConditionLock 读写锁总结 锁作为一种非强制的机制&#xff0c;被用来保证线程安全。每一个线程…

数字时代安全文件共享的重要性

数字时代彻底改变了工作、学习、交流和生活方式的方式。从在线协作到远程工作和电子学习&#xff0c;数字世界为全球各地的人们开辟了新的机遇。然而&#xff0c;伴随着这种便利性和可访问性而来的是对安全文件共享的需求。随着越来越多的机密信息在网上共享&#xff0c;窃取该…

常用数据可视化相关型图表大全

大数据时代&#xff0c;工作中我们可能经常会需要处理很多数据&#xff0c;需要在总结汇报中展示呈现&#xff0c;俗话说“字不如表&#xff0c;表不如图”&#xff0c;那么如何缩短数据与用户的距离?让用户一眼Get到重点? 在理解或分析大量数据时&#xff0c;数据可视化起着…

开始第一个vue项目,环境搭建+html项目运行

【用vue.js&#xff0c;通过script标签导入】 1. 搭建vue脚手架 安装node js安装cnpm&#xff08;淘宝源&#xff09; 【vue】在windows中搭建vue开发环境&#xff08;全网最详细&#xff09;_vue环境搭建_一起来学吧的博客-CSDN博客2a 2. 官网下载地址&#xff1a; 安装 …

Python实现ACO蚁群优化算法优化随机森林分类模型(RandomForestClassifier算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 蚁群优化算法(Ant Colony Optimization, ACO)是一种源于大自然生物世界的新的仿生进化算法&#xff0c…

伟大的公司只需要十一人

在生成式AI、云计算等技术逐渐抹平大企业与中小企业之间的技术、成本差距后&#xff0c;各企业真正比拼的&#xff0c;只剩下人才、创意与执行力。 目前&#xff0c;随着AI技术的快速迭代&#xff0c;各种基于AIGC&#xff08;人工智能内容生成&#xff09;技术的产品不断涌向…

pytest自动化测试框架和unittest自动化测试框架的区别

目录 Unittest vs Pytest 用例编写规则 用例前置与后置条件 断言 测试报告 失败重跑机制 参数化 用例分类执行 实例演示 前后置区别 参数化区别 总结 python的单元测试框架经常使用的是unittest&#xff0c;因为它比较基础&#xff0c;并且可以进行二次开发&#xf…