分数 25
全屏浏览题目
作者 CHEN, Yue
单位 浙江大学
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤ 10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
6
5 2 3 6 4 1
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
0 4 5
鸣谢用户柳汀洲补充数据!
代码长度限制
16 KB
时间限制
200 ms
内存限制
64 MB
算法思想:拓扑序列各相邻结点的顺序满足开始输入的边的端点顺序
举例如下:
判断序列5 2 3 6 4 1,序列下标分别为1 2 3 4 5 6,序列中1和2的下标分别为6和1不满足边的端点顺序故不是拓扑序列
#include<bits/stdc++.h>
using namespace std;
const int N=1009,M=10010;
int n,m;
struct edge{
int v1,v2;
}e[M];
int main(){
cin>>n>>m;
for(int i=0;i<m;i++)cin>>e[i].v1>>e[i].v2;//输入边
int k;
cin>>k;
int first=1;//用于第一次不是拓扑序列的输出
for(int i=0;i<k;i++){
bool flag=true;
vector<int>v;
int pos[N];//记录询问序列各节点的位置
for(int j=0;j<n;j++){//询问序列各节点插入并记录位置
int t;
cin>>t;
v.push_back(t);
pos[t]=j;
}
for(int j=0;j<n;j++){//该序列的结点先后位置若与边的端点先后顺序矛盾则不是拓扑序列
if(pos[e[j].v1]>pos[e[j].v2])flag=false;
}
if(!flag&&first)first=0,cout<<i;//第一次不是拓扑序列输出i
else if(!flag)cout<<' '<<i;//之后每次多输出个空格
}
return 0;
}