Jmeter性能测试工具之性能测试的概念

news2024/11/22 23:13:19

性能测试的概念

性能测试是指通过特定方式,对被测系统按照一定策略施加压力,获取系统 响应时间、TPS(Transaction Per Second)、吞吐量、资源利用率等性能指标,以期保证生产系统的性能能够满足用户需求的过程。

性能测试一般是指大数据量的测试

性能测试一般包含3个方面

应用在客户端性能的测试  -----b/s前端代码(js代码性能) app(app占用cpu/耗电/页面/加载速度--app专项测试)   

应用在网络上性能的测试  ----- 网络问题一般运维解决    路由器/交换机/提高网速

应用在服务器端性能的测试  -----核心,不停的向服务器发送请求,来检查服务器的处理请求能力(jmeter完成)

性能测试目的

客户有明确要求,如:系统要求同时满足100用户登陆,平均每个用户登陆时 间不能超过5秒

考察目前系统性能(容量测试),需要对系统做出分析,找出系统的压力点

找出系统性能瓶颈,需要分析可能对系统造成瓶颈的逻辑业务,然后才能进行性能测试

了解系统在长时间的压力下性能状况(强度测试)

性能测试环境

硬件环境:被测服务器硬件配置,用于加压客户端的机子配置,CPU 内存等

  1、被测服务器 --》和生产环境架构/部署一致,但是配置可以等比例缩小

    生产环境:金士顿 型号 128G内存  服务器是戴尔

    性能环境:金士顿 型号 32G内存    服务器是戴尔

  2、加压客户端 --》8-16G内存  cpu i5-i7 固态硬盘256G以上(正常的家用电脑和测试电脑都能具备)

软件环境:被测系统的架构,前端、中间件、服务器(这里指运行系统软件服务器,如tomcat)、数据库、测试环境部署信息以及性能测试工具信息

  保证和生产环境版本一致、参数配置也一致

网络环境:找出系统性能瓶颈可以在广域网环境进行,其它性能测试可以在局域 网进行,排除网络干扰

  1、在局域网进行性能测试,出现性能问题之后,可以排除网络问题

  2、有必要在真实的网络环境下进行一次性能测试 (测试最好全部是真实环境)

备注:性能测试的环境要独立于功能测试环境,一般在没有其它干扰被测系统的 情况下,进行性能测试

性能测试注意事项

性能测试一般在功能测试稳定的前提下进行;

修改性能测试问题的时候容易造成功能错误;比如:性能问题是代码有问题,调整好了之后性能测试没问题,要进行冒烟测试;

性能测试模型

理发店模型:

在我们的这个理发店中,我们事先做了如下的假设:

  1. 理发店共有3名理发师;(系统资源、服务器)

  2. 每位理发师剪一个发的时间都是1小时;(处理时间)

  3. 我们顾客们都是很有时间观念的人而且非常挑剔,他们对于每次光顾理发店时所能容忍的等待时间+剪发时间是3小时,而且等待时间越长,顾客的满意度越低。如果3个小时还不能剪完头发,我们的顾客会立马生气的走人。(用户可以容忍的系统响应时间为3小时,超过这个时间用户可能会重新请求或者不再请求)

通过上面的假设我们不难想象出下面的场景:
场景一:

当理发店内只有1位顾客时,只需要有1名理发师为他提供服务,其他两名理发师可能继续等着,也可能会帮忙打打杂。1小时后,这位顾客剪完头发出门走了。那么在这1个小时里,整个理发店只服务了1位顾客,这位顾客花费在这次剪发的时间是1小时;

场景二:

当理发店内同时有两位顾客时,就会同时有两名理发师在为顾客服务,另外1位发呆或者打杂帮忙。仍然是1小时后,两位顾客剪完头发出门。在这1小时里,理发店服务了两位顾客,这两位顾客花费在剪发的时间均为1小时;

场景三:

很容易理解,当理发店内同时有三位顾客时,理发店可以在1小时内同时服务三位顾客,每位顾客花费在这次剪发的时间仍然是均为1小时;

从上面几个场景中我们可以发现,在理发店同时服务的顾客数量从1位增加到3位的过程中,随着顾客数量的增多,理发店的整体工作效率在提高,但是每位顾客在理发店内所呆的时间并未延长。(当并发用户数小于最佳并发用户数时,随着用户的增加,响应时间并不会增加,只是系统资源利用率增加了)

当然,我们可以假设当只有1位顾客和2位顾客时,空闲的理发师可以帮忙打杂,使得其他理发师的工作效率提高,并使每位顾客的剪发时间小于1小时。不过即使根据这个假设,虽然随着顾客数量的增多,每位顾客的服务时间有所延长,但是这个时间始终还被控制在顾客可接受的范围之内,并且顾客是不需要等待的。

场景四:

不过随着理发店的生意越来越好,顾客也越来越多,新的场景出现了。假设有一次顾客A、B、C刚进理发店准备剪发,外面一推门又进来了顾客D、E、F。因为A、B、C三位顾客先到,所以D、E、F三位只好坐在长板凳上等着。1小时后,A、B、C三位剪完头发走了,他们每个人这次剪发所花费的时间均为1小时。可是D、E、F三位就没有这么好运,因为他们要先等A、B、C三位剪完才能剪,所以他们每个人这次剪发所花费的时间均为2小时——包括等待1小时和剪发1小时。

通过上面这个场景我们可以发现,对于理发店来说,都是每小时服务三位顾客——第1个小时是A、B、C,第二个小时是D、E、F;但是对于顾客D、E、F来说,“响应时间”延长了。(当并发用户超过最佳并发用户数,随着用户的增加,响应时间会变长)。

场景五:

在新的场景中,我们假设这次理发店里一次来了9位顾客,根据我们上面的场景,相信你不难推断,这9位顾客中有3位的“响应时间”为1小时,有3位的“响应时间”为2小时(等待1小时+剪发1小时),还有3位的“响应时间”为3小时(等待2小时+剪发1小时)——已经到达用户所能忍受的极限。假如在把这个场景中的顾客数量改为10,那么我们已经可以断定,一定会有1位顾客因为“响应时间”过长而无法忍受,最终离开理发店走了。

场景六:

假设这次理发店里一次来了10位顾客,根据上面的推算,必然存在一位顾客的“响应时间”为4个小时,而之前我们又做过假设3小时已经是顾客忍耐的极限了,所以这个顾客会因为无法忍受等待时间而离开理发店。

通过以上6个场景我们可以得出以下结论:
    1. 理发店每小时最多对3位顾客进行理发(最佳状态)

2. 顾客最多等待3小时,如超过,将离开理发店(最大忍耐限度,响应时间最低要求)

3. 进来的顾客最多为9为,不会出现顾客离开(最大边界值)

4. 进来顾客超过3位时,每个顾客在理发店的时间是不太一样的(排队有先后的,这表明没有绝对的并发)

性能模型图

在这张图中我们可以看到:

1、最开始,随着并发用户数的增长,资源占用率和吞吐量会相应的增长,但是响应时间的变化不大;

2、不过当并发用户数增长到一定程度后,资源占用达到饱和,吞吐量增长明显放缓甚至停止增长,而响应时间却进一步延长。

3、如果并发用户数继续增长,你会发现软硬件资源占用继续维持在饱和状态,但是吞吐量开始下降,响应时间明显的超出了用户可接受的范围,并且最终导致用户放弃了这次请求甚至离开。

根据这种性能表现,图中划分了三个区域,分别是Light Load(较轻的压力)、Heavy Load(较重的压力)和Buckle Zone(用户无法忍受并放弃请求)。在Light Load和Heavy Load 两个区域交界处的并发用户数,我们称为“最佳并发用户数(The Optimum Number of Concurrent Users)”,而Heavy Load和Buckle Zone两个区域交界处的并发用户数则称为“最大并发用户数(The Maximum Number of Concurrent Users)”。

当系统的负载等于最佳并发用户数时,系统的整体效率最高,没有资源被浪费,用户也不需要等待;

当系统负载处于最佳并发用户数和最大并发用户数之间时,系统可以继续工作,但是用户的等待时间延长,满意度开始降低,并且如果负载一直持续,将最终会导致有些用户无法忍受而放弃;而当系统负载大于最大并发用户数时,将注定会导致某些用户无法忍受超长的响应时间而放弃。

对应到我们上面理发店的例子,每小时3个顾客就是这个理发店的最佳并发用户数,而每小时9个顾客则是它的最大并发用户数。

当每小时都有3个顾客到来时,理发店的整体工作效率最高;而当每小时都有9个顾客到来时,前几个小时来的顾客还可以忍受,但是随着等待的顾客人数越来越多,等待时间越来越长,最终还是会有顾客无法忍受而离开。同时,随着理发店里顾客人数的增多和理发师工作时间的延长,理发师会逐渐产生疲劳,还要多花一些时间来清理环境和维持秩序,这些因素将最终导致理发师的工作效率随着顾客人数的增多和工作的延长而逐渐的下降,到最后可能要1.5小时甚至2个小时才能剪完1个发了。

当然,如果一开始就有10个顾客到来,则注定有1位顾客剪不到头发了。

进一步理解“最佳并发用户数”和“最大并发用户数
 对于一个确定的被测系统来说,在某个具体的软硬件环境下,它的“最佳并发用户数”和“最大并发用户数”都是客观存在。以“最佳并发用户数”为例,假如一个系统的最佳并发用户数是50,那么一旦并发量超过这个值,系统的吞吐量和响应时间必然会 “此消彼长”;如果系统负载长期大于这个数,必然会导致用户的满意度降低并最终达到一种无法忍受的地步。

所以我们应该保证最佳并发用户数要大于系统的平均负载。

要补充的一点是,当我们需要对一个系统长时间施加压力——例如连续加压3-5天,来验证系统的可靠性或者说稳定性时,我们所使用的并发用户数应该等于或小于“最佳并发用户数”——大家也可以结合上面的讨论想想这是为什么。(每过一个小时来3个理发的,3个理发师会不停的剪发,而用户不需要等待。理发师处于这种状态很长时间后当然会崩溃)

而对于最大并发用户数的识别,需要考虑和鉴别一下以下两种情况:

1.当系统的负载达到最大并发用户数后,响应时间超过了用户可以忍受的最大限度——这个限度应该来源于性能需求,例如:在某个级别的负载下,系统的响应时间应该小于5秒。这里容易疏忽的一点是,不要把顾客因为无法忍受而离开时店内的顾客数量作为理发店的“最大并发用户数”,因为这位顾客是在3小时前到达的,也就是说3小时前理发店内的顾客数量才是我们要找的“最大并发用户数”。而且,这位顾客的离开只是一个开始,可能有会更多的顾客随后也因为无法忍受超长的等待时间而离开;

2.在响应时间还没有到达用户可忍受的最大限度前,有可能已经出现了用户请求的失败。以理发店模型为例,如果理发店只能容纳6位顾客,那么当7位顾客同时来到理发店时,虽然我们可以知道所有顾客都能在可容忍的时间内剪完头发,但是因为理发店容量有限,最终只好有一位顾客打道回府,改天再来。

对于一个系统来说,我们应该确保系统的最大并发用户数要大于系统需要承受的峰值负载。

理发店模型的进一步扩展(解决方法)

扩展场景1:

有些顾客已经是理发店的老顾客,他们和理发师已经非常熟悉,理发师可以不用花费太多时间沟通就知道这位顾客的想法。并且理发师对这位顾客的脑袋的形状也很熟悉,所以可以更快的完成一次理发的工作。(类似于相同的账号登陆,如果一直使用一个账号发送请求和参数化不同的用户请求响应时间是不一样的)

扩展场景2:

理发店并不是只有剪发一种业务,还提供了烫发染发之类的业务,那么当顾客提出新的要求时,理发师服务一位顾客的时间可能会超过标准的1小时。而且这时如果要计算每位顾客的等待时间就变得复杂了很多,有些顾客的排队时间会比原来预计的延长,并最终导致他们因为无法忍受而离开。(不同用户发送不同的请求,有的只是登陆,有的登陆后进行其他操作)

扩展场景3:

随着烫发和染发业务的增加,理发师们决定分工,两位专门剪发,一位专门负责烫发和染发。(分配不同的服务器,不同的服务器提供不同的功能)

扩展场景4:

理发店的生意越来越好,理发师的数量和理发店的门面已经无法满足顾客的要求,于是理发店的老板决定在旁边再开一家店,并招聘一些工作能力更强的理发师。(增加处理能力更强的服务器)

扩展场景5:

理发店的生意变得极为火爆了,两家店都无法满足顾客数量增长的需求,并且有些顾客开始反映到理发店的路途太远,到了以后又因为烫发和染发的人太多而等太久。可是理发店的老板也明白烫发和染发的收入要远远高于剪发阿,于是他脑筋一转,决定继续改变策略,在附近的几个大型小区租用小的铺面开设分店,专职剪发业务;再在市区的繁华路段开设旗舰店,专门为烫发、染发的顾客,以及VIP顾客服务。并增设电话,当顾客想要剪发时,可以拨打这个电话,并由服务人员根据顾客的居住地点,将其指引到距离最近的一家分店去。(预约)

借鉴:
        借助这个模型,理解了响应时间、吞吐量、资源占用率、最佳并发用户、最大并发用户。在这个模型中,需要理发的人员(即客户)向理发店(服务器)提出理发的请求,理发师的剪发时间为1小时,即服务器的处理时间,用户的响应时间为进入理发店的门到理发完毕的时间(等待时间+处理时间)。理发店共有3个理发师(系统资源)。

当3个用户并发请求理发时,此时系统资源占用达到饱和,此时资源利用率也是最高的,因为所有的理发时都在忙,没有闲着的。此时的理发人数即最佳并发用户数。

如果再有理发请求,客户需要等待,无法及时响应。当同时到达理发店的人员(并发用户)多于3个,比如9个时,有3个用户响应时间为2小时(1小时等待+1小时理发),还有3个用户响应时间为3小时。即当超过最佳并发用户时,随着用户的增加,系统响应时间变长。

当超过9个用户,同时有10个用户到达理发店理发时,因为第7 8 9用户理完发时,第10个用户已经等待了3个小时,超过的他的极限,所以用户离开了。选择改天再来,或者不来了。即在实际中,用户请求页面,如果页面响应很慢,超过了10s 20s或者更长,用户等待烦了,会选择重新请求或者不再请求。9个用户的时候即为最大并发数,因为超过9个时,就会有超过一个的用户得不到响应。

补充解决方法:

  1. 增加理发师(增加资源、服务器)

  2. 理发师技能提高,如何能缩短理发师时间

  3. 预约理发(提升性能,增加用户体验)

  4. 增开分店(增加分店)

  5. 上班时间

  6. 理发店里,为顾客理发有高峰期,不在高峰期时,可以留一两个理发师打理,这样节约成本,知道某个时间端是有峰值的,那么在这段时间多派几个理发师来,进行工作(和性能一样都有一个高峰期,没有高峰期将服务器结点摘出去,高峰期来临时,再将结点加进去,起到一个分流的作用)

实际中为缓解并发的性能,会采用验证码、注册码等,例如:去一家购物网站抢购商品,在购物之前,可以做一个调查什么的

性能测试不能狭隘到只是后端性能测试

对于真正完整的性能测试,后端的性能测试只是他的一小部分,对于前端的,对于性能测试站在用户角度体验做的一些展现或是策略,产品设计上的优化都属于性能测试的范围。

软件性能的基本概念
从三个不同层面来对性能进行阐述:

1、从用户角度,软件性能就是软件对用户操作的响应时间

2、从管理员角度,软件性能表现在系统的响应时间,不单关注用户体验之外,还关心和系统状态相关的信息

3、从开发员角度,软件性能表现在如何调整设计和代码的实现,通过调整系统的设置等提高性能

这如同理发店模型中的顾客、老板和理发师

1、顾客关心的是理发需要的时间(用户)

2、老板关注的是如何提高顾客数量(管理员)

3、理发师所考虑最多的是提高自己的理发技艺,如何能缩短理发的时间等(开发员)

故考虑性能测试,必须从不同角度去思考问题,从用户角度和从应用系统角度来看性能测试,理解上会有些差异。

做性能测试还是理解性能测试一定要互换角度的思维,在不同角度上去看系统的性能

测试、开发、运维、领导等角度上,包括以后写报告针对于不同对象,写的报告侧重点不同,可以写一份基本的测试报告,针对于角色不同,在基本的测试报告填写东西,给不同的角色去看。

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

如果对你有帮助的话,点个赞收个藏,给作者一个鼓励。也方便你下次能够快速查找。

如有不懂还要咨询下方小卡片,博主也希望和志同道合的测试人员一起学习进步

在适当的年龄,选择适当的岗位,尽量去发挥好自己的优势。

我的自动化测试开发之路,一路走来都离不每个阶段的计划,因为自己喜欢规划和总结,

测试开发视频教程、学习笔记领取传送门!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/555911.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

坚持刷题2个月,终于......

最近一个读者和我反馈,他坚持刷题2个月,终于去了他梦寐以求的大厂,薪资涨幅非常可观,期间面字节跳动还遇到了原题…并表示目前国内的大厂和一些独角兽,已经越来越效仿硅谷公司的做法,通过面试给定题&#x…

存放页的大池子——InnoDB表空间

在上一章节中,我们知道了提到了表空间,表空间里面没有直接存放表,有的是许多许多的页,我们也说了表空间的分类,有系统表空间,独立表空间,其他表空间。 每个新建的表都会在对应的数据库目录里面…

性能优化之影响分析

页面性能的影响 性能非常重要,而具体反映到我们的业务场景中,可能会有如下影响: 不利于用户留存 站点页面的展现速度非常影响用户体验,很多用户会因等待的不耐而放弃站点。研究表明,47 % 的消费者希望页面能够在 2s …

chatgpt赋能Python-python_bonjour

Python Bonjour: 通过Python实现Bonjour协议 介绍 Bonjour是苹果公司推出的一种新型、免配置的网络协议,它可以使局域网中的电脑、打印机、电话等各种设备自动发现及配置,从而促进了网络设备的普及。Python作为一种高效、简洁、易学的语言&…

【WSN覆盖】基于麻雀搜索算法的三维混合无线传感器网络覆盖优化 三维WSN覆盖空洞修复【Matlab代码#25】

文章目录 【可更换其他算法,获取资源请见文章第6节:资源获取】1. SSA算法2. 节点感知模型3. 三维混合WSN覆盖问题4. 部分代码展示5. 仿真结果展示6. 资源获取 【可更换其他算法,获取资源请见文章第6节:资源获取】 1. SSA算法 2. 节…

机器学习与深度学习——通过奇异值分解算法压缩图片

机器学习与深度学习——通过奇异值分解算法压缩图片 什么是奇异值分解? 奇异值分解(Singular Value Decomposition,SVD)是一种重要的线性代数方法,用于将一个矩阵分解成三个部分的乘积形式。它的应用非常广泛&#x…

Leecode98

leecode98 验证二叉搜索树 给定一个二叉树,判断其是否是一个有效的二叉搜索树。 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数。 节点的右子树只包含大于当前节点的数。 所有左子树和右子树自身必须也是二叉搜索树。 &#x1…

【Linux】shell编程—Here Document免交互

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、免交互概述二、免交互常规用法1.read 命令的读取2.wc -l 的内容行数统计3.passwd用户密码的修改4.cat 查看内容并输出到文件中5.cat 查看交互内容并输出到新的文…

Spring传播机制(七种)

一、概述 Spring在TransactionDefinition接口中规定了7种类型的事务传播行为。Propagation枚举则引用了这些类型,开发过程中我们一般直接用Propagation枚举。 1.1 Propagation源码 public enum Propagation {REQUIRED(0),SUPPORTS(1),MANDATORY(2),REQUIRES_NEW(…

redis源码浅析-ziplist实现

redis中的list是有多种实现的,其中一种是ziplist,其介绍如下 ziplist 是一个经过特殊编码的双向链表,旨在提高内存效率。 它存储字符串和整数值,其中整数被编码为实际整数而不是一系列字符。 它允许在 O(1) 时间内在列表的任一侧进…

戴尔 Dell Latitude E7480电脑 Hackintosh 黑苹果efi引导文件

原文来源于黑果魏叔官网,转载需注明出处。(下载请直接百度黑果魏叔) 硬件配置 硬件型号驱动情况 主板戴尔 Dell Latitude E7480 处理器Intel Core i7-7700U已驱动 内存8GB 2133MHz DDR4 * 2已驱动 硬盘Sandisk 1T M.2 NVMe SSD已驱动 显…

windows解决python安装django架构没有django-admin命令

目录 一.尝试安装与配置 1.直接pip命令安装 2.用pycharm测试 3.官网下包安装 二.解决 1.找到django安装的路径 2.配置系统变量 3.测试创建项目 3.1.执行访问页面 3.2.解决 3.3.继续测试 4.pycharm打开 一.尝试安装与配置 1.直接pip命令安装 pip install django dja…

chatgpt赋能Python-python_7

Python 7 - 探索最受欢迎的Python版本 如果你是一位Python开发人员,你就会知道Python 7是什么。Python 7是Python编程语言的第7个主要版本,它带来了许多新的功能和改进,包括内置类型注释、上下文变量、字节码优化和更多。 在本文中&#xf…

度小满科技金融迭代:普惠小微与技术创新并肩而行

2015年,深度贫困乡镇隘口镇推出“本土人才”政策,呼吁大学生人才下基层,助力乡村经济振兴工作。 叶茂的人生轨迹因此而发生改变。彼时,20多岁的叶茂果断辞去药材公司的高薪工作,开始了回乡种植黄精的创业路,并成功竞选东坪村村主任…

log4cpp的安装(vs/visual studio版)

log4cpp安装下载源visual studio安装方法 log4cpp安装 下载源 log4cpp visual studio安装方法 将下载好的压缩包解压缩后得到下列目录(解压缩的文件夹最好放C盘,不然在编译阶段往往会出现链接不上的问题) 找到mscv10文件夹内的mscv10.sl…

【概念篇】浅谈 AOP、OOP、DDD、IOC

前言 在招聘要求中,有没有经常看见,对AOP、OOP、DDD、IOC有一定的认识,能够自主开发模块,这一类的要求。听起来是不是挺高大上,然后百度一搜,给你出来一堆概念性的东西——结果就是,东西…

《LKD3粗读笔记》(14)块I/O层

什么是块设备? 系统中能够随机访问固定大小数据片的设备被称为块设备,这些数据片称作块,最常见的块设备是硬盘。什么是字符设备? 字符设备按照字符流的方法被有序访问,像串口和键盘就都属于字符设备。这两种设备的区别…

从零开始搭建 Lsky Pro 兰空图床

本文源码:https://github.com/chen2438/chenhaotian.top/tree/main/source/_posts/linux-app/lsky.md 在我的博客上查看:https://chenhaotian.top/2022/12/30/linux-app/lsky/ 从零开始搭建 Lsky Pro 兰空图床 官方教程 安装环境 使用OneinStack安装…

第五章 面向对象-8.enum 枚举

enum 枚举 枚举的实例对象是固定的,实例是自动new,每个枚举类会自动继承java.lang.Enum 抽象类 如何声明枚举? 所有枚举类都是java.lang.Enum的子类,无需用extends来继承,如下是枚举类拥有的常用方法 方法名称说明…

测试报告框架 —— Allure2测试报告

目录 Allure2测试报告 1、使用 Allure2 运行方式-Python 2、使用 Allure2 运行方式-Java 3、生成测试报告 4、Allure2 报告中添加用例标题 5、allure2报告中添加用例步骤 6、allure2报告中添加用例链接 7、allure2报告中添加用例分类 8、Allure2 报告中添加用例描述 …