Redis主从集群搭建及其原理

news2024/12/28 4:38:48

Redis主从集群搭建及其原理

  • 1.Redis主从
    • 1.1.搭建主从架构
    • 1.2.准备实例和配置
    • 1.3.启动
    • 1.4.开启主从关系
    • 1.5.测试
  • 2.主从数据同步原理
    • 2.1.全量同步
    • 2.2.增量同步
    • 2.3.repl_backlog原理
  • 3.主从同步优化
  • 4.小结

1.Redis主从

1.1.搭建主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。

在这里插入图片描述

共包含三个节点,一个主节点,两个从节点。

这里我们会在同一台虚拟机中开启3个redis实例,模拟主从集群,信息如下:

IPPORT角色
192.168.150.1017001master
192.168.150.1017002slave
192.168.150.1017003slave

1.2.准备实例和配置

要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。

1)创建目录

我们创建三个文件夹,名字分别叫7001、7002、7003:

# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003

如图:

在这里插入图片描述

2)恢复原始配置

修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。因为主从原理就是利用RDB模式。

# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000

# 关闭AOF
appendonly no

3)拷贝配置文件到每个实例目录

然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):

# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003

# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf

4)修改每个实例的端口、工作目录

修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):

sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf

5)修改每个实例的声明IP

虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:

# redis实例的声明 IP
replica-announce-ip 192.168.150.101

每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):

# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf

# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf

1.3.启动

为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:

# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf

启动后:

在这里插入图片描述

如果要一键停止,可以运行下面命令:

printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown

1.4.开启主从关系

现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。

有临时和永久两种模式:

  • 修改配置文件(永久生效)

    • 在redis.conf中添加一行配置:slaveof <masterip> <masterport>
  • 使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):

    slaveof <masterip> <masterport>
    

注意:在5.0以后新增命令replicaof,与salveof效果一致。

这里我们为了演示方便,使用方式二。

通过redis-cli命令连接7002,执行下面命令:

# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001

通过redis-cli命令连接7003,执行下面命令:

# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001

然后连接 7001节点,查看集群状态:

# 连接 7001
redis-cli -p 7001
# 查看状态
info replication

结果:

在这里插入图片描述

1.5.测试

执行下列操作以测试:

  • 利用redis-cli连接7001,执行set num 123

  • 利用redis-cli连接7002,执行get num,再执行set num 666

  • 利用redis-cli连接7003,执行get num,再执行set num 888

可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。

2.主从数据同步原理

2.1.全量同步

主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程:

在这里插入图片描述

这里有一个问题,master如何得知salve是第一次来连接呢??

有几个概念,可以作为判断依据:

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。

因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。

因为slave原本也是一个master,有自己的replid和offset,当第一次变成slave,与master建立连接时,发送的replid和offset是自己的replid和offset。

master判断发现slave发送来的replid与自己的不一致,说明这是一个全新的slave,就知道要做全量同步了。

master会将自己的replid和offset都发送给这个slave,slave保存这些信息。以后slave的replid就与master一致了。

因此,master判断一个节点是否是第一次同步的依据,就是看replid是否一致

如图:

在这里插入图片描述

完整流程描述:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

2.2.增量同步

全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步

什么是增量同步?就是只更新slave与master存在差异的部分数据。如图:

在这里插入图片描述

那么master怎么知道slave与自己的数据差异在哪里呢?

2.3.repl_backlog原理

master怎么知道slave与自己的数据差异在哪里呢?

这就要说到全量同步时的repl_baklog文件了。

这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:

在这里插入图片描述

slave与master的offset之间的差异,就是salve需要增量拷贝的数据了。

随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:

在这里插入图片描述

直到数组被填满:

在这里插入图片描述

此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。

但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset:

在这里插入图片描述

如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:

在这里插入图片描述

棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。

在这里插入图片描述

3.主从同步优化

主从同步可以保证主从数据的一致性,非常重要。

可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

在这里插入图片描述

4.小结

简述全量同步和增量同步区别?

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

什么时候执行全量同步?

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

什么时候执行增量同步?

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/553339.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

车辆合格证怎么转为结构化excel数据?

一、为何要将车辆合格证转为结构化excel&#xff1f; 车辆合格证是在车辆制造完成后&#xff0c;经过各项检测合格的证明。对于车辆行业来说&#xff0c;车辆合格证是一种重要的合规证明&#xff0c;在车辆的生产制造、售后服务、质量管理等各个环节中都有着重要的作用。同时&…

【架构】常见技术点--监控告警

导读&#xff1a;收集常见架构技术点&#xff0c;作为项目经理了解这些知识点以及解决具体场景是很有必要的。技术要服务业务&#xff0c;技术跟业务具体结合才能发挥技术的价值。 目录 1. 服务监控 2. 全链路监控 2.1 服务拨测 2.2 节点探测 2.3 告警过滤 2.4 告警去重 …

内网 monorepo 配置指南(PNPM、YARN、Rush.js)

此处的内网是指没办法连接互联网进行依赖下载的环境&#xff0c;本文以windows平台为例 背景说明 绝大部分政府机关、国有企业都是在内网开发&#xff0c;无法从互联网同步依赖&#xff0c;就需要另辟蹊径解决项目依赖的问题。 传统的单包项目还好&#xff0c;从互联网机器将…

音视频技术开发周刊 | 294

每周一期&#xff0c;纵览音视频技术领域的干货。 新闻投稿&#xff1a;contributelivevideostack.com。 五问「ChatGPT医学影像」&#xff1a;新一代的 AI 能否成为放射科医生的一把利器&#xff1f; 在医学等专业性较强的领域内&#xff0c;ChatGPT的表现还不够好&#xff0c…

Linux 防火墙 SNAT DNAT

SNAT原理与应用 SNAT 应用环境 局域网主机共享单个公网IP地址接入Internet &#xff08;私有IP地址不能在Internet中正常路由&#xff09; SNAT原理 修改数据包的源地址 SNAT可以认为是路由器NAT中的easy ip DNAT可以认为是路由器NAT中的 nat server SNAT将 内网源地址 转化为网…

【Vue2.0源码学习】虚拟DOM篇-Vue中的DOM-Diff

1. 前言 在上一篇文章介绍VNode的时候我们说了&#xff0c;VNode最大的用途就是在数据变化前后生成真实DOM对应的虚拟DOM节点&#xff0c;然后就可以对比新旧两份VNode&#xff0c;找出差异所在&#xff0c;然后更新有差异的DOM节点&#xff0c;最终达到以最少操作真实DOM更新…

FasterRCNN训练自己的数据集

2016年提出的Faster RCNN目标检测模型是深度学习现代目标检测算法的开山之作&#xff0c;也是第一个真正全流程都是神经网络的目标检测模型。 其主要步骤如下&#xff1a; 1&#xff0c;使用CNN对输入图片提取feature map. 2&#xff0c;对feature map上的每个点设计一套不同大…

Roboflow的使用

文章目录 前言一、使用labelimg标注数据集二、导入roboflow1.注册roboflow账户2.导入图片2.1 创建工作区workspace&#xff08;非必须&#xff09;2.2 创建项目 project2.3 导入 3、导出图片4、同一个数据集可以导出不同类型 前言 我自己也是一个小白不是很会&#xff0c;如果…

ASO优化之怎么做好关键词本地化覆盖

如果想要我们的应用走向国际化&#xff0c;被多个国家/地区使用&#xff0c;那么做好关键词本地化覆盖至关重要。我们可以主要针对中文和英文进行设置&#xff08;准备两套元数据&#xff09;&#xff0c;这样能够迅速增加应用商店ASO关键词覆盖数量。 那么我们要在哪里设置&a…

小白也能懂的薛斯通道抄底指标以及公式(附源码)

什么是薛斯通道&#xff1f; 上个世纪70年代&#xff0c;美国人薛斯最早发明了薛斯通道。 他本人曾是研究火箭运行的。 薛斯通道包括两组通道指标&#xff0c;分别是长期大通道指标&#xff08;100天&#xff09;和短期小通道指标&#xff08;10天&#xff09;。 股价实际上是被…

Netflix 团队解决了 Linux 内核中的 FUSE 死锁

Laf 公众号已接入了 AI 绘画工具 Midjourney&#xff0c;可以让你轻松画出很多“大师”级的作品。同时还接入了 AI 聊天机器人&#xff0c;支持 GPT、Claude 以及 Laf 专有模型&#xff0c;可通过指令来随意切换模型。欢迎前来调戏&#x1f447; <<< 左右滑动见更多 &…

Go与神经网络:张量运算

0. 背景 2023年年初&#xff0c;我们很可能是见证了一次新工业革命的起点&#xff0c;也可能是见证了AGI(Artificial general intelligence&#xff0c;通用人工智能)[1]孕育的开始。ChatGPT应用以及后续GPT-4大模型的出现&#xff0c;其震撼程度远超当年AlphaGo战胜人类顶尖围…

微信小程序-页面跳转wxAPI

官方文档地址&#xff1a;https://developers.weixin.qq.com/miniprogram/dev/api/route/wx.navigateTo.html wx.navigateTo(Object object) 更改首页代码&#xff0c;添加一个按钮&#xff0c;绑定一个事件的点击&#xff1a; <!--index.wxml--> <text>首页</t…

《前端》HTML常用标签

文章目录 HTML导读HTML格式常用标签标题标签段落标签格式化标签超链接标签标签的几种形式 表格标签列表标签表单标签按钮标签无语义标签 ​&#x1f451;作者主页&#xff1a;Java冰激凌 &#x1f4d6;专栏链接&#xff1a;前端 HTML导读 html是超文本标记语言 一般直接运行在…

33从零开始学Java之方法的递归调用到底是怎么回事?

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦 千锋教育高级教研员、CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 在之前的文章中&#xff0c;壹哥给大家讲解了方法的定义、调用及参数、返回值等内容&#xff0c;接下…

广告行业中那些趣事系列62:keybert在实际业务中的使用分享

导读&#xff1a;本文是“数据拾光者”专栏的第六十二篇文章&#xff0c;这个系列将介绍在广告行业中自然语言处理和推荐系统实践。本篇作为之前keybert的补充主要介绍了keybert在实际业务中的使用分享&#xff0c;对于希望在实际业务场景中使用keybert的小伙伴可能有帮助。 欢…

微信小程序-页面生命周期方法

在经过上一篇文章的介绍之后&#xff0c;我们知道了大体的生命周期在什么时候执行&#xff0c;这次主要是以代码的形式来展示一下具体的阶段执行什么生命周期方法。 首先我们编写一个代码可以从首页跳转到日志页面&#xff1a; <!--index.wxml--> <text>首页</t…

项目中excel表格中由合同内容--转换为验收清单的办法(python操作excel表格)

需求&#xff1a; 把合同内容--转换为验收清单的办法&#xff08;python操作excel表格&#xff09; 1.字段重新排序 2.选择需要的表格列 原始的表格内容&#xff1a; 需要的格式&#xff1a; 涉及的技术点&#xff1a; 1.读取原始表格“readexcel1.xlsx”内容&#xff0c;修改…

第十一章 Productions最佳实践 - 生产电子表格

文章目录 第十一章 Productions最佳实践 - 生产电子表格生产电子表格界面设计 第十一章 Productions最佳实践 - 生产电子表格 生产电子表格 维护一个电子表格是很有帮助的&#xff0c;它可以逐个应用程序地组织信息系统。作为一般准则&#xff0c;应该为每个提供传入或传出数…

# 性能诊断 JProfiler 工具使用

性能诊断 JProfiler 工具使用 JProfiler是一个重量级的JVM监控工具&#xff0c;提供对JVM精确监控&#xff0c;其中堆遍历、CPU剖析、线程剖析看成定位当前系统瓶颈的得力工具。可以统计压测过程中JVM的监控数据&#xff0c;定位性能问题。 官网地址&#xff1a;Java Profiler…