learn_C_deep_11 (深刻理解整形提升、左移和右移规则、花括号、++和--操作、表达式匹配:贪心算法)

news2025/1/12 6:40:35

目录

深刻理解整形提升

左移和右移规则

如何理解"丢弃"

一个问题

 0x01<<2+3 的值是多少

花括号

++、--操作

表达式匹配:贪心算法


深刻理解整形提升

#include <stdio.h>
int main()
{
	char c = 0;
	printf("sizeof(c): %d\n", sizeof(c)); //1
	printf("sizeof(c): %d\n", sizeof(~c)); //4
	printf("sizeof(c): %d\n", sizeof(c << 1)); //4
	printf("sizeof(c): %d\n", sizeof(c >> 1)); //4
	return 0;
}

char类型的c经过按位取反、左移和右移是不是char类型了?为什么char类型的c加了操作符运算求空间大小就不是1了呢?

        无论任何位运算符,目标都是要计算机进行计算的,而计算机中只有CPU具有运算能力(先这样简单理解),但计算的数据, 都在内存中。故,计算之前(无论任何运算),都必须将数据从内存拿到CPU中,拿到CPU哪里呢?毫无疑问,在CPU 寄存器 中。 而寄存器本身,随着计算机位数的不同,寄存器的位数也不同。一般,在32位下,寄存器的位数是32位。 可是,你的char类型数据,只有8比特位。读到寄存器中,只能填补低8位,那么高24位呢? 就需要进行“整形提升”。

        char类型的数据经过按位取反、左移和右移后,仍然是char类型的数据,这些操作不会改变数据的类型。char类型进行操作符运算进行了整形提升,由于寄存器的位数是32位,char类型的变量会提升为int类型,所以求的空间大小就是4个字节。

对于vs编译器(图右)上将!c所占空间定为1个字节,我们可以认为这是编译器的bug,因为c参加了运算,必定会进行整形提升,在gcc编译器(图左)下我们就可以发现!c所占空间是4个字节。 

左移和右移规则

#include <stdio.h>
int main()
{
	/*
		<<(左移): 最高位丢弃,最低位补零
		>>(右移):
		1. 无符号数:最低位丢弃,最高位补零     [逻辑右移]
		2. 有符号数:最低位丢弃,最高位补符号位 [算术右移]
	*/
	//左移
	unsigned int a = 1;    //0000 0000 0000 0000 0000 0000 0000 0001 - 1
	printf("%u\n", a << 1);//0000 0000 0000 0000 0000 0000 0000 0010 - 2
	printf("%u\n", a << 2);//0000 0000 0000 0000 0000 0000 0000 0100 - 4
	printf("%u\n", a << 3);//0000 0000 0000 0000 0000 0000 0000 1000 - 8
	//逻辑右移
	unsigned int b = 100;  //0000 0000 0000 0000 0000 0000 0110 0100 - 100
	printf("%u\n", b >> 1);//0000 0000 0000 0000 0000 0000 0011 0010 - 50
	printf("%u\n", b >> 2);//0000 0000 0000 0000 0000 0000 0001 1001 - 25
	printf("%u\n", b >> 3);//0000 0000 0000 0000 0000 0000 0000 1100 - 12
	//算术右移,最高位补符号位1, 虽然移出了最低位1,但是补得还是1
	int c = -1;            //1111 1111 1111 1111 1111 1111 1111 1111 - -1
	printf("%d\n", c >> 1);//1111 1111 1111 1111 1111 1111 1111 1111 - -1
	printf("%d\n", c >> 2);//1111 1111 1111 1111 1111 1111 1111 1111 - -1
	printf("%d\n", c >> 3);//1111 1111 1111 1111 1111 1111 1111 1111 - -1
	//是算术右移,还是逻辑右移?最高位补0,为何?
	unsigned int d = -1;   //1111 1111 1111 1111 1111 1111 1111 1111 
	printf("%d\n", d >> 1);//0111 1111 1111 1111 1111 1111 1111 1111 - 2147483647
	printf("%d\n", d >> 2);//0011 1111 1111 1111 1111 1111 1111 1111 - 1073741823
	printf("%d\n", d >> 3);//0001 1111 1111 1111 1111 1111 1111 1111 - 536870911
	return 0;
}

结论:

        左移,无脑补0。

        右移,先判定是算术右移还是逻辑右移,判定依据:看自身类型,和变量的内容无关。

        判定了是算术,还是逻辑,才能决定最高位补什么。

如何理解"丢弃"

'<<' 和 '>>' 都是计算,都要在CPU中进行,可是参与移动的变量,是在内存中的。 所以需要先把数据移动到CPU内寄存器中,在进行移动。 那么,在实际移动的过程中,是在寄存器中进行的,即大小固定的单位内。那么,左移右移一定会有位置跑到"外边"的情况。

一个问题

#include<stdio.h>
int main()
{
	int a = 10;
	a << 1; //有没有影响a本身的值,为什么?怎么样做能影响a的值
	printf("%d\n", a);
	return 0;
}

 0x01<<2+3 的值是多少

#include <stdio.h>
int main()
{
	//0x01:0000 0000 0000 0000 0000 0000 0000 0001
	printf("%d\n", 0x01 << 2 + 3);//32
	printf("%d\n", 0x01 << (2 + 3));//32
	printf("%d\n", (0x01 << 2) + 3);//7
	return 0;
}

        这是一个C语言程序,其中定义了一个main函数,函数中执行了三个printf语句,分别输出了三个表达式的结果。

        这三个表达式的意义如下:

1. 0x01 << 2 + 3

        这个表达式中,先进行加法运算2+3,结果为5,然后再对0x01(二进制为0000 0001)进行左移5位操作,即在二进制的右侧补5个0,得到的结果为0010 0000,即十进制的32。

2. 0x01 << (2 + 3)

        这个表达式中,由于加法运算的优先级比位运算低,所以先执行括号内的加法运算,得到的结果为5。然后再对0x01进行左移5位操作,得到的结果为0010 0000,即十进制的32。

3. (0x01 << 2) + 3

        这个表达式中,先对0x01进行左移2位操作,得到的结果为0000 0100,即十进制的4。然后再将得到的结果与3进行加法运算,得到的结果为7。

        综上所述,这个程序的输出结果为:32     32     7

花括号

        在C语言中,花括号是用来表示代码块的。一个代码块包含一组语句,可以作为一个整体进行控制。花括号通常用于控制语句(如if、for、while等)的语法结构,以及函数、结构体等作用域的定义中。 在代码中,花括号用于将一组语句组合成一个代码块。花括号中的语句可以被认为是一个整体,可以作为一个单元进行控制。

//别这么写
#include <stdio.h>
int main()
{
	char a[] = { "abcde" };
	printf("%d\n", sizeof(a));

	char a[]{ = "abcde"};//error
	printf("%d\n", sizeof(a));

	char a[10]{ = "abcde" };//error
	printf("%d\n", sizeof(a));

	return 0;
}

规规矩矩写代码,不能乱写{ }。

++、--操作

#include <stdio.h>
int main()
{
	int a = 10;
	int b = ++a; //前置++, 先自增在使用
	printf("%d, %d\n", a, b); //11,11
	return 0;
}

        程序中的操作主要集中在语句 int b = ++a; 中,这是一个前置++的运算,它的作用是先让a自增1,然后再将自增后的值赋给b,因此,最终a和b的值都变成了11。

#include <stdio.h>
int main()
{
	int a = 10;
	int b = a++; //后置++, 先使用在自增
	printf("%d, %d\n", a, b); //11, 10
	return 0;
}

        程序中的操作主要集中在语句 int b = a++; 中,它是一个后置++运算,它的作用是先将a的值赋给b,然后再执行自增操作,因此,最终a的值为11,而b的值为10。

#include <stdio.h>
int main()
{
	int a = 0xDD;
	//有b接收,那么a的先使用是将a的值(内容),放到b中
	int b = a++; 

	int c = 0xEE;
	//没有接收方,那么"先使用",如何理解?
	c++; 
	return 0;
}

        a++完整的含义是先使用,在自增。如果没有变量接收,那么直接自增(或者所谓使用,就是读取进寄存器,然后没有 然后)。 

#include <stdio.h>
int main()
{
	int i = 1;
	int ret = (++i) + (++i) + (++i);
	printf("%d\n", ret);
	printf("%d\n", i);
	return 0;
}

        本代码结果不同的原因就是 i 变量自增后有没有影响后面的 i 值。i 是自己自增完后经过加法运算后 i 再自增,还是三次 i 都自增完然后再进行加法操作。

 我们现在来看一下vs下的计算过程

本质:是因为上面表达式的"计算路径不唯一"(为什么?编译器识别表达式,是同时加载至寄存器,还是分批加载,完全不确定)导致的。以后,类似这种复杂表达式,我们一律不推荐使用或者编写。

表达式匹配:贪心算法

#include<stdio.h>
int main()
{
	int a = 10;
	int b = 20;
	printf("%d\n", a++++ + b); //自动匹配失败
    //    贪心算法:(a++)++ + b
	int a = 10;
	int b = 20;
	printf("%d\n", a++ + ++b); //自行分离匹配,非常不推荐,不过能看出空格的好处
	return 0;
}

        在这段代码中,我们看到了两个不同的表达式。第一个表达式是 `a++++ + b`,它会自动匹配失败,因为自增运算符只能和一个变量一起使用。由于自增运算符的优先级比加法运算符高,因此编译器会将其解释为 `(a++)++ + b`,这是非法的表达式。因此,编译器会报告错误。

        第二个表达式是 `a++ + ++b`,它虽然能够被编译器解析正确,但这种写法不够清晰,不推荐使用。这个表达式中包含了两个自增运算符,其中一个跟在变量名前面,另一个跟在变量名后面。由于自增运算符的优先级高于加法运算符,编译器会首先对 `++b` 进行自增操作,然后将 `a` 和 `b` 进行加法运算。

        在这两个表达式中,我们都可以看到贪心算法的影子。贪心算法会尽可能地选择当前最优的解决方案,但在这里,由于自增运算符只能和一个变量一起使用,所以编译器只能尽量匹配,直到遇到无法匹配的表达式为止。因此,为了避免这种情况,我们应该尽量避免写出复杂的、不清晰的表达式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/545428.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++系列之类与对象(上)

&#x1f497; &#x1f497; 博客:小怡同学 &#x1f497; &#x1f497; 个人简介:编程小萌新 &#x1f497; &#x1f497; 如果博客对大家有用的话&#xff0c;请点赞关注再收藏 &#x1f31e; 类 类的概念 C是基于面向对象的&#xff0c;是对象与对象之间的交互完成的&am…

docker构建PHP环境

docker构建PHP环境 文章目录 docker构建PHP环境下载镜像构建本地目录创建容器配置补充命令解释设置docker启动时启动容器 下载镜像 # php 镜像 docker pull php:7.4-fpm # nginx镜像 docker pul nginx:lates # 检查下载的镜像 docker images构建本地目录 本次构建是在win系统…

怎么查营业执照经营范围

怎么查营业执照经营范围 1.到企业公司所在地查询。一般工商局都要求公司将营业执照正本悬挂于企业办公室醒目位置,在公司工商营业执照正副本中均有描述。 2.登陆国家工商管理网站查询。可以登陆开具发票单位所在的工商行政管理局网站,输入企业名称就可以查询法人、企业类型、经…

第七章 中断

中断是什么&#xff0c;为什么要有中断 并发是指单位时间内的累积工作量。 并行是指真正同时进行的工作量。 一个CPU在一个时间只能执行一个进程&#xff0c;任何瞬间任务只在一个核心上运行。 而CPU外的设备是独立于CPU的&#xff0c;它与CPU同步运行&#xff0c;CPU抽出一点…

2023年十大最佳黑客工具!

​用心做分享&#xff0c;只为给您最好的学习教程 如果您觉得文章不错&#xff0c;欢迎持续学习 在今年根据实际情况&#xff0c;结合全球黑客共同推崇&#xff0c;选出了2023年十大最佳黑客工具。 每一年&#xff0c;我都会持续更新&#xff0c;并根据实际现实情况随时更改…

山西煤矿电子封条算法 opencv

山西煤矿电子封条通过pythonopencv网络模型AI视觉技术&#xff0c;pythonopencv算法模型实现对出入井人监察控制、调度室空岗识别、生产作业状态、摄像头遮挡、挪动角度识别、货运车辆出矿识别等。 OpenCV的全称是Open Source Computer Vision Library&#xff0c;是一个跨平台…

CleanMyMac X如何下载解锁完整版本?

这是一款很受到mac用户喜爱的清理软件。不仅清理文件的步骤十分简单&#xff0c;电脑小白用户也可以高效清理Mac电脑。作为一款全方位保护电脑的软件&#xff0c;CleanMyMac已经不满足于只做简单的Mac清理工具&#xff0c;而是为mac用户提供更多的实用功能&#xff1a;优化系统…

机器学习随记(7)——bootstrap、bagging、boosting、随机森林

bootstrap&#xff1a;是一种统计方法&#xff0c;也是一种思想&#xff0c;简单说就是在所有样本集中进行有放回地抽样&#xff0c;抽取n个样本。如果不清楚样本的分布&#xff0c;bootstrap是一种合适的方法。 bagging&#xff1a;Bagging方法在训练过程中&#xff0c;各基分…

windows提权

权限提升概述 1、提权介绍 权限提升&#xff1a;攻击者通过安全漏洞把获取到的受限制的低权限用户突破限制&#xff0c;提权至高权限的管理员用户&#xff0c;从而获取对整个系统的控制权 windows&#xff1a;user --> system/administrator linux&#xff1a;user --&g…

ASEMI代理Infineon英飞凌IPB072N15N3G原厂MOS管

编辑-Z IPB072N15N3G参数描述&#xff1a; 型号&#xff1a;IPB072N15N3G 持续漏极电流&#xff1a;100A 脉冲漏极电流&#xff1a;400A 雪崩能量&#xff0c;单脉冲&#xff1a;780 mJ 栅极-源极电压&#xff1a;20V 功率耗散&#xff1a;300W 操作和储存温度&#xf…

Voxformer代码 DataLoader 的编写

Stage 1: 目标是 使用QPN 生成 Occupancy Field 读取 需要读取 pseudo 的 vox_path 实际的 test 发生在 lmsnet.py 这个文件 input :25625632 的 pseudo point output: 12812816 的 Occupancy Grid 代码中 实际inference 的输入是 img_metas[0]["pseudo_pc"] 因此…

算法小课堂(十)随机化算法

目录 一、概述 1.1概念 1.2分类 二、数值随机化算法 2.1随机数 2.2用随机投点法计算Π值 2.3随机投点法计算定积分 三、舍伍德&#xff08;Sherwood&#xff09;型随机化算法 3.1随机洗牌算法 3.2随机快速排序&#xff1a;随机选择枢点的快速排序算法 3.3找出这n个元素…

STL——string类的模拟实现

0.关注博主有更多知识 C知识合集 目录 1.编码问题 2.string类概述 2.6习题练习 3.string类的模拟实现 3.1成员变量 3.2迭代器部分 3.3类的默认成员部分 3.4容量接口 3.5增删查改接口 3.6通用接口 3.7输入与输出 3.8完整代码 1.编码问题 实际上在我们接触C之前就…

SpringBoot入门(构建、打包、启动、起步依赖starter)

文章目录 1 SpringBoot快速入门1.1 开发步骤步骤1 创建新模块步骤2 创建 Controller步骤3 启动服务器步骤4 进行测试 1.2 对比1.3 官网构建工程步骤1 进入SpringBoot官网步骤2 选择依赖步骤3 生成工程 1.4 SpringBoot工程快速启动1.4.1 问题导入1.4.2 打包1.4.3 启动 2 SpringB…

OverTheWireBandit教程(1-10)

这个网站还挺好玩的于是我就抽点时间做了一下 OverTheWire的登录网址&#xff1a;OverTheWire: Bandit 本人用的是远程连接软件mobaxterm&#xff0c;windows自带的ssh版本不对用不了 Bandit Level 0 Level Goal The goal of this level is for you to log into the game usi…

使用ASM直接生成字节码的方法

ASM是一套java字节码分析/生成/修改的工具&#xff0c;它能够在java程序运行时直接修改java字节码文件&#xff0c;换句话说它能够直接修改java的二进制文件&#xff1b;也能够跳过编译直接生成字节码文件。所以ASM功能非常强大&#xff0c;对于代码性能提升、代码问题定位都非…

【技术】《Netty》从零开始学netty源码(六十)之ByteToMessageDecoder

ByteToMessageDecoder 在Netty中用于拆包的解码器都继承了抽象类ByteToMessageDecoder&#xff0c;它的类结构如下&#xff1a; 从中可以看出它其实就是一个handler&#xff0c;只要添加到pipeline中channel每次读取数据的时候都会得到解析&#xff0c;它的数据结构如下&#…

业绩涨,股价不涨,蓝思科技深陷「果链困局」

作者 | 辰纹 来源 | 洞见新研社 曾经的女首富&#xff0c;蓝思科技董事长周群飞很困惑&#xff0c;公司业绩明明还算不错&#xff0c;可股价却怎么也涨不起来&#xff0c;距离市值2000亿的顶点更是遥遥无望。 根据不久前&#xff08;4月23日&#xff09;蓝思科技发布的2022年…

Mybatis中处理特殊SQL处理逻辑

文章目录 0、前言1、模糊查询2、动态表名3、获取自增的组件4、批量删除 0、前言 在MyBatis中可能会有一些特殊的SQL需要去执行&#xff0c;一般就是模糊查询、批量删除、动态设置表名、添加功能获取自增的主键这几种&#xff0c;现在分别来进行说明。 为了方便演示 &#xff0…

强化学习路线规划之深度学习代码练习预备

前面已经练习过神经网络的相关代码&#xff0c;其实弄明白了你会发现深度学习其实是个黑盒&#xff0c;不论是TensorFlow还是pytorch都已经为我们封装好了&#xff0c;我们不需要理解深度学习如何实现&#xff0c;神经网络如何计算&#xff0c;这些都不用我们管&#xff0c;可能…