Zero2Hero 4 - Gradient
- 创建一个
Value
类,属性包含变量的值和梯度信息,并支持梯度计算。 - 举例说明梯度反向计算过程。
- 基于
Value
类构建MLP模型、并实现参数的更新。
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
Value类
支持加法、乘法和Tanh的梯度计算
class Value:
def __init__(self, data, _children=(), _op='', label=''):
self.data = data
self.grad = 0.0
self._backward = lambda: None
self._prev = set(_children)
self._op = _op
self.label = label
def __repr__(self):
return f"Value(data={self.data})"
def __add__(self, other):
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += 1.0 * out.grad
other.grad += 1.0 * out.grad
out._backward = _backward
return out
def __mul__(self, other):
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def tanh(self):
x = self.data
t = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)
out = Value(t, (self, ), 'tanh')
def _backward():
self.grad += (1 - t**2) * out.grad
out._backward = _backward
return out
def backward(self):
# topological order all of the children in the graph
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()
例子1:加法
a = Value(-4.0)
b = Value(2.0)
c = a + b
c.backward()
print("a.grad : ",a.grad)
print("b.grad : ",b.grad)
a.grad : 1.0
b.grad : 1.0
计算图
简单分析以下,反向传播和梯度计算的过程:
c.prev : (Value(data=-4.0), Value(data=2.0))
a.grad = 0.0
b.grad = 0.0
- 创建空列表topo,和空集合visited。
- 调用
build_topo()
方法,把c加入列表topo中和集合visited中。 - 然后遍历
c.prev
中的Value对象,(Value(data=-4.0), Value(data=2.0))
- 对每个Value对象都调用,
build_topo()
方法 - 先检查Value是否存在visited集合中,否,加入列表和集合
- 然后如每个Value对象的prev不为空,继续递归调用下去
- 对每个Value对象都调用,
- 直到遍历完计算图中全部的Value对象,初始化
c.grad = 1.0
。 - 逆序遍历topo列,调用
_backward()
计算每个Value对象的梯度c._backward()
:a.grad += 1.0 * c.grad
b.grad += 1.0 * c.grad
a._backward = lambda : None
b._backward = lambda : None
a.grad
: 1.0,b.grad
: 1.0
例子2:加法、乘法混合运算
a = Value(2.0, label='a')
b = Value(-3.0, label='b')
c = Value(10.0, label='c')
e = a*b; e.label = 'e'
d = e + c; d.label = 'd'
f = Value(-2.0, label='f')
L = d * f; L.label = 'L'
L
Value(data=-8.0)
正向传播过程:
反向传播过程:
L.backward()
print("d.grad : ",d.grad)
print("f.grad : ",f.grad)
print("c.grad : ",c.grad)
print("e.grad : ",e.grad)
print("a.grad : ",a.grad)
print("b.grad : ",b.grad)
d.grad : -2.0
f.grad : 4.0
c.grad : -2.0
e.grad : -2.0
a.grad : 6.0
b.grad : -4.0
例子3:MLP
MLP结构如下:
# inputs x1,x2
x1 = Value(2.0, label='x1')
x2 = Value(0.0, label='x2')
# weights w
w1 = Value(-3.0, label='w1')
w2 = Value(1.0, label='w2')
# bias
b = Value(6.8813735870195432, label='b')
# x1*w1 + x2*w2 + b
o1 = x1*w1; o1.label = 'o1'
o2 = x2*w2; o2.label = 'o2'
ho = o1 + o2; ho.label = 'ho'
n = ho + b; n.label='n'
o = n.tanh(); o.label = 'o'
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(o)
for val in reversed(topo):
print(val.label,":",val,val.grad)
o : Value(data=0.7071067811865476) 0.0
n : Value(data=0.8813735870195432) 0.0
b : Value(data=6.881373587019543) 0.0
ho : Value(data=-6.0) 0.0
o2 : Value(data=0.0) 0.0
w2 : Value(data=1.0) 0.0
x2 : Value(data=0.0) 0.0
o1 : Value(data=-6.0) 0.0
x1 : Value(data=2.0) 0.0
w1 : Value(data=-3.0) 0.0
计算计算图中每个节点的梯度 step by step:
o.grad = 1.0
n.grad = n.grad + (1.0 - o.data**2) * o.grad
n.grad
0.4999999999999999
ho.grad = ho.grad + 1.0 * n.grad
b.grad = b.grad + 1.0 * n.grad
ho.grad, b.grad
(0.4999999999999999, 0.4999999999999999)
o1.grad = o1.grad + 1.0 * ho.grad
o2.grad = o2.grad + 1.0 * ho.grad
o1.grad, o2.grad
(0.4999999999999999, 0.4999999999999999)
x1.grad = x1.grad + w1.data * o1.grad
w1.grad = w1.grad + x1.data * o1.grad
x1.grad, w1.grad
(-1.4999999999999996, 0.9999999999999998)
x2.grad = x2.grad + w2.data * o2.grad
w2.grad = w2.grad + x2.data * o2.grad
x2.grad, w2.grad
(0.4999999999999999, 0.0)
for val in reversed(topo):
print(val.label,":",val,val.grad)
o : Value(data=0.7071067811865476) 1.0
n : Value(data=0.8813735870195432) 0.4999999999999999
b : Value(data=6.881373587019543) 0.4999999999999999
ho : Value(data=-6.0) 0.4999999999999999
o2 : Value(data=0.0) 0.4999999999999999
w2 : Value(data=1.0) 0.0
x2 : Value(data=0.0) 0.4999999999999999
o1 : Value(data=-6.0) 0.4999999999999999
x1 : Value(data=2.0) -1.4999999999999996
w1 : Value(data=-3.0) 0.9999999999999998
扩展Value类
增加减法和指数运算
class Value:
def __init__(self, data, _children=(), _op='', label=''):
self.data = data
self.grad = 0.0
self._backward = lambda: None
self._prev = set(_children)
self._op = _op
self.label = label
def __repr__(self):
return f"Value(data={self.data})"
def __add__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += 1.0 * out.grad
other.grad += 1.0 * out.grad
out._backward = _backward
return out
def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __pow__(self, other):
assert isinstance(other, (int, float)), "only supporting int/float powers for now"
out = Value(self.data**other, (self,), f'**{other}')
def _backward():
self.grad += other * (self.data ** (other - 1)) * out.grad
out._backward = _backward
return out
def __rmul__(self, other): # other * self
return self * other
def __truediv__(self, other): # self / other
return self * other**-1
def __neg__(self): # -self
return self * -1
def __sub__(self, other): # self - other
return self + (-other)
def __radd__(self, other): # other + self
return self + other
def tanh(self):
x = self.data
t = (math.exp(2*x) - 1)/(math.exp(2*x) + 1)
out = Value(t, (self, ), 'tanh')
def _backward():
self.grad += (1 - t**2) * out.grad
out._backward = _backward
return out
def exp(self):
x = self.data
out = Value(math.exp(x), (self, ), 'exp')
def _backward():
self.grad += out.data * out.grad
out._backward = _backward
return out
def backward(self):
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(self)
self.grad = 1.0
for node in reversed(topo):
node._backward()
例子4
# inputs x1,x2
x1 = Value(2.0, label='x1')
x2 = Value(0.0, label='x2')
# weights w1,w2
w1 = Value(-3.0, label='w1')
w2 = Value(1.0, label='w2')
# bias of the neuron
b = Value(6.8813735870195432, label='b')
# x1*w1 + x2*w2 + b
h1 = x1*w1; h1.label = 'h1'
h2 = x2*w2; h2.label = 'h2'
h = h1 + h2; h.label = 'h'
n = h + b; n.label = 'n'
# ----
e = (2*n).exp()
o = (e - 1) / (e + 1)
# ----
o.label = 'o'
o.backward()
计算图
简单实现MLP
class Neuron:
def __init__(self, nin):
self.w = [Value(np.random.uniform(-1,1)) for _ in range(nin)]
self.b = Value(np.random.uniform(-1,1))
def __call__(self, x):
# w * x + b
act = sum((wi*xi for wi, xi in zip(self.w, x)), self.b)
out = act.tanh()
return out
def parameters(self):
return self.w + [self.b]
class Layer:
def __init__(self, nin, nout):
self.neurons = [Neuron(nin) for _ in range(nout)]
def __call__(self, x):
outs = [n(x) for n in self.neurons]
return outs[0] if len(outs) == 1 else outs
def parameters(self):
return [p for neuron in self.neurons for p in neuron.parameters()]
class MLP:
def __init__(self, nin, nouts):
sz = [nin] + nouts
self.layers = [Layer(sz[i], sz[i+1]) for i in range(len(nouts))]
def __call__(self, x):
for layer in self.layers:
x = layer(x)
return x
def parameters(self):
return [p for layer in self.layers for p in layer.parameters()]
# 初始化模型
m = MLP(3, [4, 4, 1])
# 训练数据
xs = [
[2.0, 3.0, -1.0],
[3.0, -1.0, 0.5],
[0.5, 1.0, 1.0],
[1.0, 1.0, -1.0],
]
ys = [1.0, -1.0, -1.0, 1.0] # desired targets
训练MLP
loss_history = []
for k in range(10000):
# forward pass
ypred = [n(x) for x in xs]
loss = sum((yout - ygt)**2 for ygt, yout in zip(ys, ypred))
# backward pass
for p in n.parameters():
p.grad = 0.0
loss.backward()
# update
for p in n.parameters():
p.data += -0.1 * p.grad
loss_history.append(loss.data)
plt.figure(figsize=(5,3))
plt.plot(loss_history)