Ansys Zemax | 设计抬头显示器时要使用哪些工具 – 第三部分

news2025/1/19 19:42:19

本文为使用OpticStudio工具设计优化HUD抬头显示器系统的第三部分,主要包含演示了如何使用OpticStudio非序列模式工具正向分析HUD系统的性能以及后续可能的扩展分析。

上两篇文章中(第一部分点此查看,第二部分点此查看),我们主要介绍了如何以逆向方式对于HUD系统进行建模,以及根据分析系统的初始性能,并结合具体设计指标了解如何对系统进行控制与优化。本篇文章将主要结合OpticStudio非序列模式功能进行正向HUD系统性能的整体评估。(联系我们获取文章附件)

最终步骤:从显示器到虚像(正向)

翻转系统

翻转系统不是直接一步到位的。镜头数据编辑器中的元件翻转工具有一些限制,HUD系统肯定会破坏这些限制,因为该系统包含坐标间断和非标准表面。

棘手的部分是Z轴是“翻转的”。对于像HUD这样的非对称系统,该工具无法正常工作。

另一种解决方案如下所述:

•在镜头数据编辑器中,选择Make Double Pass工具:

该系统在表面12上包含一个反射面,该反射就是LCD。只有我们系统的之后部分才值得关注。

•表面24是新的STOP表面。首先可以固定表面24的半直径,将“孔径”更改为“按光阑大小浮动”,然后将“STOP”表面设置为表面24。

•系统需要整理:删除从“虚像”到“显示器”中定义的所有表面;从表面1到11。设计结果可以在表面13上移除,表面13的厚度是固定值2000mm。“物面厚度(表面0)”设置为0mm。

•表面13即STOP面可以设置为全局坐标参考表面。系统如下所示:

•现在,视场数据编辑器中的视场必须重新定义为LCD视场尺寸:

系统性能

•光斑尺寸(模糊):可以在Afocal image Space中检查图像清晰度,STOP的大小等于白天的瞳孔尺寸,它的直径是4毫米。

光斑的模糊低于2’,1’大约是人眼的分辨率。

•图像模拟:HUD将对车辆的速度进行成像。图像模拟工具可以让用户了解HUD系统图像质量:

•发散/会聚(双目视差):驾驶员的双眼将通过光学系统观看虚像。每只眼睛看到同一图像点的方向之间通常有一个很小的角度差异。垂直(上/下)角度差被称为双会聚。水平(左/右)角度差称为收敛。可以使用结果文件“HUD_Step1_MF_after_optim_2_eyes.zar”进行检查。瞳孔直径为4mm,瞳孔间距设置为50mm。对于视觉系统,这些值的典型极限在1.0 mrad的数量级上,因此系统在该极限范围内。

步骤3:非序列模式 

直接转换为NSC组(非序列组)

系统现在已准备好导出到非序列进行进一步分析。

初始的文件名为“HUD_Step2_reversed.zar”

OpticStudio有一个内置工具“转换为NSC组”,可以将序列表面转换为非序列元件;或者将整个序列系统转换为非序列系统。转换反射镜时,如果基板厚度大于0,则会将反射镜转换为复合透镜物体,其厚度等于反射镜基板厚度。因此,在这个文件中,我们将反射镜4、6、8和11的厚度设置为5毫米。该文件现在已准备好进行转换。

一旦转换了文件,就需要进行一些整理。下面的列表说明了不同的步骤。最后的非序列文件可以在文章的顶部下载:  

“HUD_Step3_NONSEQ_after_tidying_up.zar”

•在全局坐标系中定义所有的物体:

 

•只保留一个光源:以视场1为中心,第4行的椭圆光源。删除所有其它光源(第1行至第3行和第5行至第12行)。将该光源更改为“矩形光源”,其宽度为±12.5mm,尺寸为±5mm。将布局光线的数量设置为10:

•逆追迹光线:

•删除在序列模式中对翻转系统有用的表面2以及表面3。删除所有空物体。

•删除平面反射镜:在非序列模式下只需要一个平面反射镜(删除第10-14行)。

•将风挡玻璃的材料改为N-BK7(第14行)。

•将Eyebox(第15行)更改为Detector Color(检测器颜色),并添加约为-8度的Tilt(倾斜)X。速度将显示在Detector Color的底部。眼盒尺寸为X半宽=50mm,Y半宽=20mm。将X中的像素数设置为400,将Y中的像素数目设置为200。此外,Detector Color半角设置为X 20度和Y 10度,并且添加了180度的倾斜Y和倾斜Z,使得最终图像在右方向上显示。

•将检测器25更改为矩形光源,并将注释更改为“虚像”。添加-8度的“倾斜X”,并将“Y位置”更改为275 mm,以使其位于探测器的中心。

20条布局光线,X半宽=1000mm,Y半宽=500mm,光源距离=2000,翻转光线。

•删除所有其他探测器(16至24)。

在这一点上,来自LCD窗口的布局光线似乎与风挡玻璃没有相互作用。风挡玻璃是一个布尔原生对象:它是矩形体积和由2个扩展多项式曲面组成的复合透镜。

要了解发生了什么,让我们通过取消勾选“Do Not Draw Object”选项卡中的“不绘制对象”选项来绘制矩形体积:

三维布局显示“光源”位于矩形体积内,矩形体积是布尔体的父对象之一。在这种情况下,需要启用Source的Inside Of f标识才能指向布尔对象。还需要在NSCE(非序列数据编辑器)中的布尔物体之后定义光源,以便内部能正常工作。

 

•在第1行剪切矩形光源物体,并将其复制到风挡玻璃下方。更改Inside Of flag。现在光线在风挡玻璃上散射了。

•添加一个幻灯片物体作为LCD显示屏上显示速度的源图像,并将其放在LCD光源的前面。将“X全宽”设置为26 mm,将“纵横比”设置为1.0。

•虚拟图像处的矩形光源(物体#17)将用于模拟建立太阳光照射。添加一个幻灯片物体以表示司机看到的背景场景(Object Properties >Sources> Raytrace> Reverse Rays,以便光线向探测器发射)。将“幻灯片X全宽”设置为2000 mm,将“纵横比”设置为1.0。

•在第17行设置矩形光源的光谱,以匹配太阳光谱。

•光源14(LCD显示器):功率=1W,分析射线数=1E6

•光源17(照明背景):功率=10W,分析射线数=1E7

整理后,NSC实体模型中的最终系统如下所示。

结论

可以使用Detector Viewer显示驾驶员看到的模拟图像。首先单击 Analyze > Ray Trace 执行光线追迹,然后设置“光线追迹控制”,如下所示。然后通过单击 Analyze > Detector Viewer 来查看探测器查看器。在“设置”菜单下,设置“显示为:真彩色”和“显示数据:角度空间”。角度空间是序列非无焦像空间设置的非序列同等形式设置。这里使用它是因为人眼模型没有在这个系统中建模。

探测器查看器现在以真彩色显示驾驶员将使用设计的HUD系统看到的内容:

除此之外

在非序列模式下,用户可以执行其他分析,例如Straylight Analysis(杂散光分析),或由驾驶员头部移动引起的图像观察亮度变化等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/539915.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

js 定时去重复显示和隐藏的思路

文章目录 思路一 每秒执行思路二 直接用定时器,但是不每秒思路三 es9 异步迭代异步迭代例子1 直接使用例子2 async await例子3 * yield异步遍历器 --》要想用for await of 必须遍历这个简化 for await of解决1秒出现第一个结果,再过2秒出现第二个&#x…

电脑录屏软件哪个好用?3款屏幕录制大师分享!

案例:如何快速录制电脑屏幕? 【每次录制电脑屏幕都要花费我很多时间,十分影响我工作的效率。有没有什么方法可以帮助我实现电脑快速录屏?蹲一款好用的电脑录屏软件!】 电脑录屏是我们在工作或学习中常常需要使用到的功能&#x…

Swagger介绍及Springboot整合Swagger避坑

Swagger简介 前后端分离 vueSpringboot 后端时代:前端之管理静态页面,html>后端。模板引擎 JSP>后端是主力 前后端分离时代: 后端:后端控制层、服务层、数据访问层【后端团队】前端:前端控制层、视图层【前端…

网易云音乐开发--recommendSong搭建

recommendSong页面头部静态搭建 先新建一个 recommendSong 修改上面的nav部分 写上面的样式。我们现在写在这个框里面放个日期 就是让这个文字基于父元素垂直水平居中 样式搞定 recommendSong日期动态显示 之前我们将recommendSong静态头部做好了,现在我们需…

Springboot idea 中 maven配置问题,找不到依赖:Could not find artifact xxxx

现象:当我们从代码仓拉取新项目时,从该项目的开发同事拿到其maven的settings文件,作为项目的maven配置,为了是能找到工程中所依赖的包,能从远程仓下载下来。 然后本地仓的包,也从同事那边拷贝一份过来&…

二叉搜索树详解及代码实现

目录 一、什么是二叉搜索树 二、二叉搜索树的有关操作 2.1 查找: 2.2插入: 2.3 删除: 2.4 打印 三、二叉搜索树的应用 3.1 K模型: 3.2 KV模型: 四、整体代码: K模型: KV模型&#xff…

物联网应用普及正在改变我们的生活

物联网(Internet of Things,IoT)指的是通过互联网连接各种物品、设备和传感器,实现物品之间的互联互通,形成智能化、自动化的数据交互和服务体系。简单来说,就是将各类物品通过互联网连接,实现互…

小心!YouTube官方邮件恐是网络钓鱼

在最近的一条推文中,YouTube披露了有关新的网络钓鱼诈骗的详细信息,并呼吁用户小心“no-replyyoutube.com”发送的信件。该骗局一直在使用真实的no-replyyoutube.com电子邮件地址来引诱用户泄露他们的登录凭据。那么这种新的网络钓鱼是如何运作的呢&…

原神QQ机器人BOT搭建教程Ubuntu系统

原神QQ机器人BOT搭建教程Ubuntu系统 大家好我是艾西,今天跟大家分享的是YUAN神qi鹅群机器人bot搭建方式以及详细的操作步骤。跟上艾西的节奏准备发车啦! 前言:(xxxx即为xxxx)(zzz即为zzz) qi…

【池化技术】基于Apache组件--对象池的介绍与使用

文章目录 一、背景二、对象池有什么特征?三、池的大小选择四、运行原理五、对象管理5.1添加对象5.2借用对象5.3归还对象5.4对象状态 六、对象池的使用6.1 接入6.2 实现线程池工厂6.3 初始化 七、优缺点八、应用场景8.1Redis应用8.2 Web服务器例子8.3 游戏开发种的例…

论文中文翻译——Double-Fetch情况如何演变为Double-Fetch漏洞:Linux内核中的双重获取研究

本论文相关内容 论文下载地址——Web Of Science论文中文翻译——How Double-Fetch Situations turn into Double-Fetch Vulnerabilities A Study of Double Fetches in the Linux Kernel 文章目录 本论文相关内容前言Double-Fetch情况如何演变为Double-Fetch漏洞:…

Elasticsearch:如何使用 Elasticsearch 以自然语言提示 ChatGPT

作者:Enrico Zimuel 这些天每个人都在谈论 ChatGPT。 这种大型语言模型 (LLM) 的一项很酷的功能是能够生成代码。 我们用它来生成 Elasticsearch DSL 查询。 目标是在 Elasticsearch 中搜索 “给我股票指数中 2017 年的前 10 个文档(Give me the first 1…

C/C++web编程,以及案例(内附小白基础知识)你也能轻松学会呦~

目录 C基本知识,小白来这里 C 基本的输入输出 I/O 库头文件 标准输出流(cout) 标准输入流(cin) 标准错误流(cerr) 标准日志流(clog) Cweb编程,老手来这…

【人工智能】蚁群算法(密恐勿入)

蚁群算法(密恐勿入) 蚁群算法--给你一个感性认识 蚁群算法(密恐勿入)1. 算法简介1.1 基本原理1.1.1 模拟蚂蚁在简单地形,寻找食物1.1.2 模拟蚂蚁在复杂地形,找到食物1.2 算法应用 2. 算法解析3.算法应用——…

Spark 2:Spark Core RDD算子

RDD定义 RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。 Resilient:RDD中的数据可以存储在内存中或者磁盘中。 Distribut…

Jenkins入门使用详解,实现构建部署运行

Hi I’m Shendi Jenkins入门使用详解,实现构建部署运行 Jenkins简介 Jenkins 是一个用 Java 编写的开源自动化工具 Jenkins是一款开源 CI&CD 软件,用于自动化各种任务,包括构建、测试和部署软件。 CI 指持续集成,属于开发人…

【数据结构】--单链表力扣面试题①移除链表元素

题述: 给你一个链表的头结点head和一个整数val,请你删除链表中所有满足Node.val val的节点,并返回新的头结点。 思考: 为什么说要返回新的头结点,因为你删除的可能存在把原来的头结点删除的情况,这时就需要有新的头结…

【机器学习】

说明:机器学习总结 0、数据集 1、贝叶斯分类器 (一)计算题 所有样本分为两类(c ):好瓜是、好瓜否 (1)计算先验概率:P(c ) (2)计算每个属性的条…

元宇宙:梦想能否照进现实?

开篇我想问大家一个问题:有没有想过人类的未来是什么样子? 就目前我们所能探索的世界,不论从空间上有跨越了几十亿光年的距离,还是从时间有上几万几亿年的演化,对于宇宙来说,我们人类实在是太过渺小、脆弱…

非暴力沟通模型

非暴力沟通模型 非暴力沟通的创始人是马歇尔.卢森堡,师从人本主义心理学之父卡尔.罗杰斯。《非暴力沟通》一书入选香港大学推荐的50本必读书籍之列。 模型介绍 非暴力沟通(英文名称:NonviolentCommunication,简称NVC)…