由浅入深Netty基础知识NIO三大组件原理实战

news2024/11/28 4:48:33

目录

  • 1 三大组件
    • 1.1 Channel & Buffer
    • 1.2 Selector
    • 1.3 多线程版设计
    • 1.4 多线程版缺点
    • 1.5 线程池版设计
    • 1.6 线程池版缺点
    • 1.7 selector 版设计
  • 2 ByteBuffer
    • 2.1 ByteBuffer 正确使用姿势
    • 2.2 ByteBuffer 结构
    • 2.3 调试工具类
    • 2.4 ByteBuffer 常见方法
      • 2.4.1 分配空间
      • 2.4.2 向 buffer 写入数据
      • 2.4.3 从 buffer 读取数据
      • 2.4.5 mark 和 reset
      • 2.4.6 字符串与 ByteBuffer 互转
    • 2.5 Buffer 的线程安全
    • 2.6 Scattering Reads
    • 2.7 Gathering Writes


1 三大组件

在这里插入图片描述
non-blocking io 非阻塞 IO

1.1 Channel & Buffer

channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层

channel
buffer

常见的 Channel 有

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

buffer 则用来缓冲读写数据,常见的 buffer 有

  • ByteBuffer
    • MappedByteBuffer
    • DirectByteBuffer
    • HeapByteBuffer
  • ShortBuffer
  • IntBuffer
  • LongBuffer
  • FloatBuffer
  • DoubleBuffer
  • CharBuffer

1.2 Selector

selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途

1.3 多线程版设计

多线程版
socket1
thread
socket2
thread
socket3
thread

1.4 多线程版缺点

  • 内存占用高
  • 线程上下文切换成本高
  • 只适合连接数少的场景

1.5 线程池版设计

线程池版
socket1
thread
socket2
thread
socket3
socket4

1.6 线程池版缺点

  • 阻塞模式下,线程仅能处理一个 socket 连接
  • 仅适合短连接场景

1.7 selector 版设计

selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)

selector 版
selector
thread
channel
channel
channel

调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理

2 ByteBuffer

有一普通文本文件 data.txt,内容为

1234567890abcd

使用 FileChannel 来读取文件内容

@Slf4j
public class ChannelDemo1 {
    public static void main(String[] args) {
        try (RandomAccessFile file = new RandomAccessFile("helloword/data.txt", "rw")) {
            FileChannel channel = file.getChannel();
            ByteBuffer buffer = ByteBuffer.allocate(10);
            do {
                // 向 buffer 写入
                int len = channel.read(buffer);
                log.debug("读到字节数:{}", len);
                if (len == -1) {
                    break;
                }
                // 切换 buffer 读模式
                buffer.flip();
                while(buffer.hasRemaining()) {
                    log.debug("{}", (char)buffer.get());
                }
                // 切换 buffer 写模式
                buffer.clear();
            } while (true);
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
}

输出

10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:10
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 1
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 2
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 3
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 4
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 5
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 6
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 7
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 8
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 9
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 0
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:4
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - a
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - b
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - c
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - d
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:-1

2.1 ByteBuffer 正确使用姿势

  1. 向 buffer 写入数据,例如调用 channel.read(buffer)
  2. 调用 flip() 切换至读模式
  3. 从 buffer 读取数据,例如调用 buffer.get()
  4. 调用 clear() 或 compact() 切换至写模式
  5. 重复 1~4 步骤

2.2 ByteBuffer 结构

ByteBuffer 有以下重要属性

  • capacity
  • position
  • limit

一开始

在这里插入图片描述

写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态

在这里插入图片描述

flip 动作发生后,position 切换为读取位置,limit 切换为读取限制

在这里插入图片描述

读取 4 个字节后,状态

在这里插入图片描述

clear 动作发生后,状态

在这里插入图片描述

compact 方法,是把未读完的部分向前压缩,然后切换至写模式

在这里插入图片描述

2.3 调试工具类

public class ByteBufferUtil {
    private static final char[] BYTE2CHAR = new char[256];
    private static final char[] HEXDUMP_TABLE = new char[256 * 4];
    private static final String[] HEXPADDING = new String[16];
    private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
    private static final String[] BYTE2HEX = new String[256];
    private static final String[] BYTEPADDING = new String[16];

    static {
        final char[] DIGITS = "0123456789abcdef".toCharArray();
        for (int i = 0; i < 256; i++) {
            HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
            HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
        }

        int i;

        // Generate the lookup table for hex dump paddings
        for (i = 0; i < HEXPADDING.length; i++) {
            int padding = HEXPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding * 3);
            for (int j = 0; j < padding; j++) {
                buf.append("   ");
            }
            HEXPADDING[i] = buf.toString();
        }

        // Generate the lookup table for the start-offset header in each row (up to 64KiB).
        for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
            StringBuilder buf = new StringBuilder(12);
            buf.append(NEWLINE);
            buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
            buf.setCharAt(buf.length() - 9, '|');
            buf.append('|');
            HEXDUMP_ROWPREFIXES[i] = buf.toString();
        }

        // Generate the lookup table for byte-to-hex-dump conversion
        for (i = 0; i < BYTE2HEX.length; i++) {
            BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
        }

        // Generate the lookup table for byte dump paddings
        for (i = 0; i < BYTEPADDING.length; i++) {
            int padding = BYTEPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding);
            for (int j = 0; j < padding; j++) {
                buf.append(' ');
            }
            BYTEPADDING[i] = buf.toString();
        }

        // Generate the lookup table for byte-to-char conversion
        for (i = 0; i < BYTE2CHAR.length; i++) {
            if (i <= 0x1f || i >= 0x7f) {
                BYTE2CHAR[i] = '.';
            } else {
                BYTE2CHAR[i] = (char) i;
            }
        }
    }

    /**
     * 打印所有内容
     * @param buffer
     */
    public static void debugAll(ByteBuffer buffer) {
        int oldlimit = buffer.limit();
        buffer.limit(buffer.capacity());
        StringBuilder origin = new StringBuilder(256);
        appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
        System.out.println("+--------+-------------------- all ------------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
        System.out.println(origin);
        buffer.limit(oldlimit);
    }

    /**
     * 打印可读取内容
     * @param buffer
     */
    public static void debugRead(ByteBuffer buffer) {
        StringBuilder builder = new StringBuilder(256);
        appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
        System.out.println("+--------+-------------------- read -----------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
        System.out.println(builder);
    }

    private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
        if (isOutOfBounds(offset, length, buf.capacity())) {
            throw new IndexOutOfBoundsException(
                    "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
                            + ") <= " + "buf.capacity(" + buf.capacity() + ')');
        }
        if (length == 0) {
            return;
        }
        dump.append(
                "         +-------------------------------------------------+" +
                        NEWLINE + "         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |" +
                        NEWLINE + "+--------+-------------------------------------------------+----------------+");

        final int startIndex = offset;
        final int fullRows = length >>> 4;
        final int remainder = length & 0xF;

        // Dump the rows which have 16 bytes.
        for (int row = 0; row < fullRows; row++) {
            int rowStartIndex = (row << 4) + startIndex;

            // Per-row prefix.
            appendHexDumpRowPrefix(dump, row, rowStartIndex);

            // Hex dump
            int rowEndIndex = rowStartIndex + 16;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(" |");

            // ASCII dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append('|');
        }

        // Dump the last row which has less than 16 bytes.
        if (remainder != 0) {
            int rowStartIndex = (fullRows << 4) + startIndex;
            appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);

            // Hex dump
            int rowEndIndex = rowStartIndex + remainder;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(HEXPADDING[remainder]);
            dump.append(" |");

            // Ascii dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append(BYTEPADDING[remainder]);
            dump.append('|');
        }

        dump.append(NEWLINE +
                "+--------+-------------------------------------------------+----------------+");
    }

    private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
        if (row < HEXDUMP_ROWPREFIXES.length) {
            dump.append(HEXDUMP_ROWPREFIXES[row]);
        } else {
            dump.append(NEWLINE);
            dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
            dump.setCharAt(dump.length() - 9, '|');
            dump.append('|');
        }
    }

    public static short getUnsignedByte(ByteBuffer buffer, int index) {
        return (short) (buffer.get(index) & 0xFF);
    }
}

2.4 ByteBuffer 常见方法

2.4.1 分配空间

可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法

Bytebuffer buf = ByteBuffer.allocate(16);

2.4.2 向 buffer 写入数据

有两种办法

  • 调用 channel 的 read 方法
  • 调用 buffer 自己的 put 方法
int readBytes = channel.read(buf);

buf.put((byte)127);

2.4.3 从 buffer 读取数据

同样有两种办法

  • 调用 channel 的 write 方法
  • 调用 buffer 自己的 get 方法
int writeBytes = channel.write(buf);

byte b = buf.get();

get 方法会让 position 读指针向后走,如果想重复读取数据

  • 可以调用 rewind 方法将 position 重新置为 0
  • 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针

2.4.5 mark 和 reset

mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置

注意

rewind 和 flip 都会清除 mark 位置

2.4.6 字符串与 ByteBuffer 互转

ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("你好");
ByteBuffer buffer2 = Charset.forName("utf-8").encode("你好");

debug(buffer1);
debug(buffer2);

CharBuffer buffer3 = StandardCharsets.UTF_8.decode(buffer1);
System.out.println(buffer3.getClass());
System.out.println(buffer3.toString());

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| e4 bd a0 e5 a5 bd                               |......          |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| e4 bd a0 e5 a5 bd                               |......          |
+--------+-------------------------------------------------+----------------+
class java.nio.HeapCharBuffer
你好

2.5 Buffer 的线程安全

Buffer 是非线程安全的

2.6 Scattering Reads

分散读取,有一个文本文件 3parts.txt

onetwothree

使用如下方式读取,可以将数据填充至多个 buffer

try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
    FileChannel channel = file.getChannel();
    ByteBuffer a = ByteBuffer.allocate(3);
    ByteBuffer b = ByteBuffer.allocate(3);
    ByteBuffer c = ByteBuffer.allocate(5);
    channel.read(new ByteBuffer[]{a, b, c});
    a.flip();
    b.flip();
    c.flip();
    debug(a);
    debug(b);
    debug(c);
} catch (IOException e) {
    e.printStackTrace();
}

结果

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6f 6e 65                                        |one             |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 74 77 6f                                        |two             |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 74 68 72 65 65                                  |three           |
+--------+-------------------------------------------------+----------------+

2.7 Gathering Writes

使用如下方式写入,可以将多个 buffer 的数据填充至 channel

try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
    FileChannel channel = file.getChannel();
    ByteBuffer d = ByteBuffer.allocate(4);
    ByteBuffer e = ByteBuffer.allocate(4);
    channel.position(11);

    d.put(new byte[]{'f', 'o', 'u', 'r'});
    e.put(new byte[]{'f', 'i', 'v', 'e'});
    d.flip();
    e.flip();
    debug(d);
    debug(e);
    channel.write(new ByteBuffer[]{d, e});
} catch (IOException e) {
    e.printStackTrace();
}

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 6f 75 72                                     |four            |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 69 76 65                                     |five            |
+--------+-------------------------------------------------+----------------+

文件内容

onetwothreefourfive

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/537791.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

chatgpt赋能Python-numpy查找

Numpy查找 - 了解numpy中的查找功能 什么是Numpy&#xff1f; Numpy是Python语言中的一种开源的数学计算库&#xff0c;允许开发者轻松高效地进行数学运算。它提供了一整套矩阵运算方式&#xff0c;支持各种各样的数学函数和数据类型&#xff0c;并且可以与其他Python库良好地…

chatgpt赋能Python-macbook怎么用python

使用MacBook进行Python编程的完全指南 如果您是一名Python编程工程师&#xff0c;那么您需要一台性能良好的电脑来进行编程工作。今天&#xff0c;我们将探讨如何使用MacBook来编写Python代码&#xff0c;以及如何使您的Mac运行最佳状态。 安装Python 在开始使用Python之前&…

还在老一套?STM32使用新KEIL5的IDE,全新开发模式RTE介绍及使用

Keil新版本出来了&#xff0c;推出了一种全新开发模式RTE框架( Run-Time Environment)&#xff0c;更好用了。然而网上的教程资料竟还都是把Keil5当成Keil4来用&#xff0c;直接不使用这个功能。当前正点原子或野火的教程提供的例程虽有提到Keil5&#xff0c;但也是基本上当Kei…

Qt Quick系列(1)—开发界面以及相关文件介绍

作者&#xff1a;CCAccept 专栏&#xff1a;Qt Quick 文章目录 开发界面相关文件介绍.pro文件.pri文件&#xff08;这个一般要稍微大一点的Qt项目才会用到&#xff09;main.cppmain.qml 开发界面 如何具体的写代码实现Qt Quick的UI界面&#xff0c;首先我们需要新建一个空的…

Java面向对象程序设计实验报告(实验三 继承的练习)

✨作者&#xff1a;命运之光 ✨ 专栏&#xff1a;Java面向对象程序设计实验报告 ​ 目录 ✨一、需求设计 ✨二、概要设计 ✨三、详细设计 ✨四、调试结果 ✨五、测试结果 ✨附录&#xff1a;源程序代码&#xff08;带注释&#xff09; demo3类 Person类 Student类 …

[架构之路-201]-《软考-系统分析师》- 关键技术 - 结构化分析方法与面向对象分析(分析与设计的区别)

目录 前言&#xff1a; 一、分析与设计的区别 二、结构化分析方法 2.1 实体关系图&#xff1a;E - R 图 &#xff08;名词&#xff09; 2.2. 数据流图&#xff08;数据的流动&#xff09; (1) 顶层图。 (2) 逐层分解。 2.3. 状态转换图&#xff08;动作&#xff09; …

电压比较器

电压比较器&#xff1a; 应用一&#xff1a;过压&#xff0c;低压检测&#xff08;over and undervoltage detectors&#xff09; 如果Vin<Vs&#xff0c;则VoutVpullup。 如果Vin>Vs&#xff0c;则Vout0V。 应用二&#xff1a;窗口比较器&#xff08;window comparat…

Zadoff-Chu序列

ZC序列的定义 ZC序列有两个重要的参数&#xff1a; 根索引&#xff08;root index&#xff09; q 1 , 2 , ⋯ , N z c − 1 q1,2,\cdots,N_{zc}-1 q1,2,⋯,Nzc​−1ZC序列的长度 N z c N_{zc} Nzc​&#xff0c;一定得是奇数&#xff08;常常是质数&#xff09; 给定上述两…

网络:网络分层与协议/OSI七层模型/(TCP/IP模型)

一、简单理解 OSI模型(Open System Interconnection)&#xff1a; 七层模型&#xff0c;亦称OSI&#xff08;Open System Interconnection&#xff09;。参考模型是国际标准化组织&#xff08;ISO&#xff09;制定的一个用于计算机或通信系统间互联的标准体系&#xff0c;一般…

数据结构——带头双向循环链表实现

目录 前言 一、结构介绍 二、增删查改的实现 1.在某一位置前插入数据 2.头插 3.尾插 4.删除某一位置的节点 5.头删 6.尾删 7.查找 8.打印 9.销毁 三、完整项目代码 1.头文件(List.h) 2.函数文件(List.c) 3.主函数测试文件(test.c) 前言 在学习数据结构过程中&…

HQL语法

HQL基础语法 Hive中的语句叫做HQL语句,是一种类似SQL的语句,基本上和SQL相同但是某些地方也是有很大的区别. 数据库操作 创建数据库 1.创建一个数据库,数据库在HDFS上的默认存储路径是/hive/warehouse/*.db。 create database hive01; 避免要创建的数据库已经存在错误&…

【零基础学机器学习 3】机器学习类型简介:监督学习 - 无监督学习 - 强化学习

机器学习是人工智能的一种应用,从大量数据中学习并解决特定问题。它使用计算机算法,通过经验自动提高效率。 机器学习主要有三种类型:监督、无监督和强化学习。 监督学习 概述 监督学习是一种使用标记数据来训练机器学习模型的机器学习类型。在标记数据中,输出已经是已知…

javascript-基础知识点总结

目录 &#xff08;一&#xff09;基础语法 1、javaScript引入方式 2、变量与常量 3、数据类型 typeof操作符 4、运算符 5、输出函数 6、类型转化 7、转移字符 8、注释 &#xff08;二&#xff09;流程控制 1、选择结构 switch 2、循环结构 for &#xff08;三&…

简单网络管理协议 SNMP

文章目录 1 概述1.1 结构1.2 操作 2 SNMP2.1 报文格式2.2 五大报文类型 3 扩展3.1 网工软考真题 1 概述 #mermaid-svg-95KMV1m3prKJgwv1 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-95KMV1m3prKJgwv1 .error-ico…

【云原生】K8sYaml文件详细

K8sYaml文件详细 一、Kubernetes支持的文件格式1、yaml和json的主要区别2、yaml语言格式 二、YAML操作1、查看API资源版本标签2、编写资源配置清单3、创建资源对象4、查看创建的pod5、创建service服务对外提供访问并测试6、创建资源对象7、测试访问 三、Kubernetes中的Port四、…

chatgpt赋能Python-new_init_python

新版Python中的__new__和__init__方法 Python作为一种高级编程语言&#xff0c;具有简单易学、代码可读性高和编写效率高等特点&#xff0c;因此越来越受到程序员们的青睐。其中&#xff0c;__new__和__init__方法是Python中的两个非常重要的方法&#xff0c;它们在实例化一个…

chatgpt赋能Python-matplotlib绘制雷达图

Matplotlib 绘制雷达图 在数据分析和可视化领域&#xff0c;雷达图是一种常用的图表类型。Matplotlib 是一个用于绘制 2D 图形的 Python 库&#xff0c;也可以用于绘制雷达图。本文将介绍如何使用 Matplotlib 绘制雷达图&#xff0c;包括数据准备、绘图方式和样式设置。 数据…

改进YOLOv5 | 在 C3 模块中添加【SE】【CBAM】【 ECA 】【CA】注意力机制 | 附详细结构图

文章目录 1. SE 注意力模块1.1 原理1.2 C3_SE 代码2. CBAM 注意力模块2.1 原理2.2 C3_CBAM 代码3. CA 注意力模块3.1 原理3.2 C3_CA 代码4. ECA 注意力模块4.1 原理4.2 C3_ECA 代码5. 添加方式💡6. C3_Attention 结构图 🍀7. 相关推荐🍀

Ada语言学习(1)Basic Knowledge

文章目录 说在前头命名注释数字变量变量类型signed integersEnumerationsFloating Points 类型重用&#xff08;继承&#xff09;类型转换 运算符属性&#xff08;Attributes&#xff09;练习 说在前头 本系列教程将会通过提问的方式来完成整个学习过程&#xff0c;因为当你能…

瑞吉外卖 - 公共字段自动填充功能(10)

某马瑞吉外卖单体架构项目完整开发文档&#xff0c;基于 Spring Boot 2.7.11 JDK 11。预计 5 月 20 日前更新完成&#xff0c;有需要的胖友记得一键三连&#xff0c;关注主页 “瑞吉外卖” 专栏获取最新文章。 相关资料&#xff1a;https://pan.baidu.com/s/1rO1Vytcp67mcw-PD…