纯python统计基于orthofinder得到的系统发育树的关注点位置的树型结构

news2024/12/23 4:23:03

对于某一个物种或某类物种在整个系统发育树中的位置存在一定争议的情况,使用直系同源基因构建单基因树,并对该物种或该类物种所在结构进行统计是可以对争议起到一定的解决作用的,在此留下全套流程和大家交流。

主要分为几步:

  1. 使用orthofinder进行直系同源基因的寻找和单基因树的构建。(软件安装请自寻教程)
  2. 树型统计
    2.1 对orthofinder跑出来的单基因树进行合并,并简化
    2.2 树型统计
    2.3 标签还原

1. 使用orthofinder进行直系同源基因的寻找和单基因树的构建

将待测物种的蛋白序列放到一个文件夹中:~/liuwei/01.tree.230513/01.Orthofinder/DataSet
将每个物种的蛋白序列放到一个文件夹中
在~/liuwei/01.tree.230513/01.Orthofinder目录下跑
脚本为:

orthofinder -f DataSet -t 80 -a 1

跑完结果在
~/liuwei/01.tree.230513/01.Orthofinder/DataSet/OrthoFinder/Results_May15_4
结果文件描述请参考
https://www.jianshu.com/p/3bcd965605f5

orthofiner对每个cluser内的基因都建了一个树,使用的模型暂时还没去看,了解的可以留言,这个结果放在文件夹Resolved_Gene_Trees中了。
我们需要自己把其中的单基因树抓取出来并放到一个文件中去,orthofiner的结果也给出了单基因的list,文件为Orthogroups/Orthogroups_SingleCopyOrthologues.txt

使用脚本01.cat_files.py将Resolved_Gene_Trees中的单基因树抓出来并放到一个文件中:

import sys
f1 = open("~/liuwei/01.tree.230513/01.Orthofinder/DataSet/OrthoFinder/Results_May15_4/Orthogroups/Orthogroups_SingleCopyOrthologues.txt","r")  # SingleCopyOrthologues clusterID list
f3 = open("all_Single_Copy_Orthologue_Trees.txt","w")
for i in f1:
	i = i.strip()
	f2 = open(f"Resolved_Gene_Trees/{i}_tree.txt","r")
	content = f2.readline()
	f3.write(content+"\n")
	f2.close()
f3.close()
f1.close()

这样得到了all_Single_Copy_Orthologue_Trees.txt,内含所有单基因树。

——————————————————————————————
到这里单基因树的文件已经得到,后续我们要做的是为统计结构精简一下单基因树。

由于这个单基因树内的每个单基因树对应的单基因id不一致,因此我们只需要留下物种id就行,随后写了脚本进行简化基因id和物种id。

为了方便管理,我新建了一个test_py文件夹,后续工作主要在此文件夹下进行,各位请自行注意脚本的文件路径。

因为开始的思路没有那么清晰,所以开始我是先精简了一下基因id,将基因id去掉,只保留了物种id(蛋白文件名)。
脚本如下:
ps:我可能对…/SpeciesIDs.txt进行过修饰,必然把点"." 修改成了下划线"_"

import re
f1 = open("all_Single_Copy_Orthologue_Trees.txt","r")
f3 = open("../SpeciesIDs.txt","r")
SpeciesIDs = []
for i in f3:
        i=i.strip()
        SpeciesIDs.append(i)
new_Trees = []
for i in f1:
        for j in SpeciesIDs:
                i = re.sub(f'{j}_[^:]*:','{}:'.format(j),i)
        new_Trees.append(i)
f2 = open("all_concise_Trees.txt","w")
for i in new_Trees:     
        f2.write(i)

随后因为还是很难看,所以直接把物种名标准化了,这里很重要,因为后续的脚本对标准化的名字其实是有要求的,一定要形如M1或M23,ps:M后面的数字不能达3位,你要能自己看脚本也能自己修改,几位其实很easy,只是我懒得改了。
首先建立远物种名和新物种名一一对应文件SpeciesIDs.txt,形如这种,改成以M开头,从小到大依次命名。

1817_protein    M1
1824_protein    M2
21178_protein   M3
21183_protein   M4
21184_protein   M5
21185_protein   M6
21186_protein   M7
21187_protein   M8
21189_protein   M9
21192_protein   M10
2612_protein    M11
2613_protein    M12
Ascim1_GeneCatalog_proteins_20121221_aa M13
Ascni1_GeneCatalog_proteins_20141120_aa M14
Chove1_GeneCatalog_proteins_20131210_aa M15
D10A_protein    M16
D11A_protein    M17
D12A_protein    M18
D13A_protein    M19
D14A_protein    M20
D15A_protein    M21
D16A_protein    M22
D17A_protein    M23
D18A_protein    M24

随后使用脚本changeSpeciesIDs.py将上一步得到的all_concise_Trees.txt中的物种名基于上述文件标准化。

python changeSpeciesIDs.py all_concise_Trees.txt SpeciesIDs.txt 
#this script follows the concise_Trees.py shortNameTrees.txt
import sys
#f1 = open("all_concise_Trees.txt","r")
#f2 = open("SpeciesIDs.txt","r")
#f3 = open("shortNameTrees.txt","w")
f1 = open(sys.argv[1],"r")
f2 = open(sys.argv[2],"r")
f3 = open(sys.argv[3],"w")
name = {}
for i in f2:
        i = i.strip()
        a = i.split()
        name[a[0]] = a[1]
for i in f1:
        for j in name.keys():
                if j in i:
                        i = i.replace(j+",",name[j]+",")
                        i = i.replace(j+")",name[j]+")")
                        i = i.replace(j+":",name[j]+":")
        f3.write(i)

自此树文件准备完成,后面就是统计树型了。

二、树型结构统计

逻辑上对于一个物种或者group来说,观察其与最近的枝brother和较近的枝uncle之间的拓扑结构是最重要的,剩下的就是作为外群ancestor,如图a,而图b可视为图a的简略拓扑结构图,本脚本的目的则为统计所有单基因树中,以target species/group为核心的所有拓扑结构及其数量,每种中brother、uncle以及ancestor内含的物种数量和id是一致的,但brother、uncle以及ancesto内的物种的细分拓扑结构未被进一步考虑,也无需进一步考虑,需要进一步考虑的话可以以其内部某group为target进一步进行统计。
在这里插入图片描述

使用脚本Count_Structures_Of_PhylogenyTrees.py统计树型。
注意:目标物种或目标物种群的输入在脚本的121行,我这里使用的是input的模式,你可以自己把121行注释了,改成122或123行的形式。
唯一的输入文件就是之前准备好的树文件,结果使用重定向输出到result.txt中。
脚本运行命令如下:

python Count_Structures_Of_PhylogenyTrees.py shortNameTrees.txt >result.txt

脚本内容如下:

#!/public/home/wangwen_lab/zhangjiexiong/anaconda3/bin/python
import re,sys
class Node:
	def __init__(self,nodeNum,nodeLength,upbranch,downbranch):
		self.nodeNum = nodeNum
		self.upbranch = upbranch
		self.downbranch = downbranch
		self.nodeLength = nodeLength
class family:
	def __init__(self,me,brother,father,uncle="NULL",ancestor="NULL"):
		self.me = me
		self.brother = brother
		self.father = father
		self.uncle = uncle
		self.ancestor = ancestor
#f1 = open("shortNameTrees.txt","r")
def findComma(s): # find the core comma of a tree string
	place,sta = 0,0
	for i in s:
		if i == "(":
			sta += 1
		elif i  == ")":
			sta -= 1
		if i == ",":
			if sta == 1:
				commaplace = place
				break
		place += 1
	return commaplace
def findPairedBracket(s): #find the coord of fist "(" and the last ")"
	place,sta = 0,0
	for i in s:
		if i == "(":
			sta += 1
			if sta == 1:
				firstbracket = place
		elif i  == ")":
			sta -= 1
			if place != 0 and sta == 0:
				pairedbracket = place
		place += 1
#	bracket[firstbracket] = pairedbracket
	return [firstbracket,pairedbracket]

def NodeInfo(s): #store the information of the node to the class--Node which is definded in the first
	treelen = len(s)
	bracket = findPairedBracket(s)
	nodeInfo = s[bracket[1]+1:treelen]
	nodeNum = nodeInfo.split(":")[0]
	nodeLength = nodeInfo.split(":")[1]
	nodeContent = s[0:bracket[1]+1]	
	commaplace = findComma(nodeContent)
	nodelength = len(nodeContent)
	upbranch = nodeContent[1:commaplace]
	downbranch = nodeContent[commaplace+1:nodelength-1]
	node = Node(nodeNum,nodeLength,upbranch,downbranch)
	return node

def judgeNode(s): #judge whether the string is a tree
	if type(s) == type('str'):
		if "(" in s:
			bracket = findPairedBracket(s)
			tail  = s[bracket[1]::]
		#	print(tail)
			if re.match("\)n\d+:",tail):
				return 1
			else:
				return 0
	else:
		return 1
def circle(node): # !!!! the most important function which carry out the iteration of the tree to send each subtrees to a global list named "dicNode"
	if judgeNode(node):
		node = NodeInfo(node)
		dicNode.append(node)
		circle(node.upbranch)
		circle(node.downbranch)
def judgeCertainSpecies(node,species): #judge whether the input branch "species" is the only branch under the node's two subbranch and distinguish whether the train is in upbranch or downbranch
	if species in node.upbranch:
		branch = node.upbranch
		elipbranch = branch.replace(species,"")
		if "(" in elipbranch:
			return 0
		else:
			return "up"
	elif species in node.downbranch:
		branch = node.downbranch
		elipbranch = branch.replace(species,"")
		if "(" in elipbranch:
			return 0
		else:
			return "down"
	else:
		return 0
def findDirectFamiliesOfAimedNode(node): #node is a string type. This function can find the adjioning branch of the target node and return the adjioning nodes
	for i in dicNode:
		if judgeCertainSpecies(i,node) != 0:
			father = "("+i.upbranch+","+i.downbranch+")"+i.nodeNum+":"+i.nodeLength
			if judgeCertainSpecies(i,node) == "up":
				me = i.upbranch
				brother = i.downbranch
			elif judgeCertainSpecies(i,node) =="down":
				brother = i.upbranch
				me = i.downbranch
	families = family(me,brother,father)
	return families
def findAllFamiliesOfAimedNode(tree,node): #This function is used to find out all the four related branches of the target node, which are named as "brother", "father", "uncle" and "ancestor".
	directfolks = findDirectFamiliesOfAimedNode(node)
	upgeneration = findDirectFamiliesOfAimedNode(directfolks.father)
	directfolks.ancestor = tree.replace(upgeneration.father,"Me:0")
	me = directfolks.me
	directfolks.uncle = upgeneration.brother
	return directfolks

def drawOutAllStrainInTree(node): #input a node, draw out all the strain name then sort and merge the name together by ",", then it can be used to compare with other processed strings.
	strains = re.findall("M\d{1,2}",node)
	strains.sort()
	merged_string = ','.join(strains)
	return merged_string

ftree = open(sys.argv[1],"r")
#target = input("Please input your most concerned species or subtree:")
target = "M23"
#target = "(M40:0.139101,M42:0.159342)n5:0.079548"
treenum = 0
treetype = {}
for i in ftree:
	i = i.replace(";",":0")
	treenum += 1
	dicNode = []
	circle(i)
	allfolks = findAllFamiliesOfAimedNode(i,target)
	treetype[treenum] = drawOutAllStrainInTree(allfolks.me)+"\t"+drawOutAllStrainInTree(allfolks.brother)+"\t"+drawOutAllStrainInTree(allfolks.uncle)+"\t"+drawOutAllStrainInTree(allfolks.ancestor)
#	print(allfolks.me)
structure = {}
treeid = {}
for i in range(len(treetype)):
	structure[treetype[i+1]]=structure.get(treetype[i+1],0)+1
	treeid[treetype[i+1]]= treeid.get(treetype[i+1],"")+str(i+1)+","
d_order = sorted(structure.items(), key=lambda x: x[1],reverse = True)
print("aim\taimNum\tbrother\tbrotherNum\tuncle\tuncleNum\tancestor\tancestorNum\ttopoStructuresNum\tcorrespondingTreesID")
for i in d_order:
	a = i[0].split("\t")
	for j in a:
		try:
			b = j.split(",")
			print(j+"\t"+str(len(b)),end = "\t")
		except:
			print(j,end="\t")
	print(str(i[1]),end = "\t")
	print(treeid[i[0]])

输出结果如下:
第一列为目标group的物种编号,随后是目标group内的物种数;
第三列为brother的物种编号,随后是brother的物种数
第五列为uncle
第七列为ancestor
第九列为具有该结构的但基因树的数目
第10列为对应的基因树的编号(按照输入文件的树的从前往后编的,第一个数编为1,第二个编为2,依此类推)

aim	aimNum	brother	brotherNum	uncle	uncleNum	ancestor	ancestorNum	topoStructuresNum	correspondingTreesID
M23	1	M10,M16,M17,M22,M24,M28,M29,M30,M32,M33,M35,M4,M5,M6,M7,M8,M9	1M1,M11,M12,M18,M19,M2,M20,M21,M25,M26,M3,M31,M34,M36,M37,M38	16	M13,M14,M15,M27,M39,M40,M41,M42,M43	9	843	2,6,13,14,18,21,22,23,24,26,28,31,33,34,35,43,45,48,49,50,58,59,61,64,65,71,76,81,82,83,84,86,87,89,91,94,100,106,107,109,112,113,114,118,119,124,126,129,131,132,135,137,142,147,148,151,155,157,159,160,162,167,175,181,184,185,188,190,191,201,202,203,207,209,213,214,217,218,220,221,222,223,226,227,234,239,244,245,246,247,249,255,260,261,262,265,267,268,273,276,281,290,292,296,298,301,302,303,313,315,319,325,339,340,342,343,346,347,351,352,353,354,355,356,371,373,380,381,400,401,404,408,414,415,416,419,421,422,432,433,435,439,440,441,442,448,452,453,456,457,464,465,489,490,493,495,497,500,506,507,509,514,515,516,519,520,525,537,539,540,541,542,543,545,546,548,551,554,559,561,567,574,576,579,581,585,588,590,591,592,595,596,599,601,607,609,610,612,613,614,626,631,632,639,640,642,645,646,647,648,655,659,663,668,670,671,682,683,688,689,691,697,698,699,700,701,703,704,706,708,711,712,713,715,717,720,729,732,739,741,745,746,747,749,750,751,752,755,756,757,763,764,766,767,769,771,774,783,785,791,792,797,798,800,801,804,816,818,821,837,838,846,847,848,850,853,858,861,863,864,865,870,876,877,878,879,880,882,888,890,891,893,913,920,921,923,924,926,927,929,931,932,934,937,940,942,943,948,951,952,954,957,961,962,963,966,968,979,982,983,984,991,999,1001,1004,1007,1010,1011,1012,1013,1014,1015,1017,1022,1023,1024,1026,1028,1030,1034,1040,1041,1043,1046,1047,1048,1050,1053,1061,1067,1068,1073,1075,1076,1079,1081,1085,1086,1094,1095,1096,1097,1099,1102,1103,1104,1105,1107,1108,1109,1112,1113,1114,1115,1116,1117,1119,1122,1124,1128,1130,1139,1140,1141,1143,1159,1160,1162,1166,1170,1175,1179,1185,1189,1196,1197,1198,1199,1200,1201,1202,1203,1207,1211,1212,1213,1215,1217,1220,1223,1224,1226,1228,1231,1236,1241,1248,1250,1258,1259,1261,1263,1278,1280,1281,1284,1285,1287,1288,1291,1293,1296,1300,1304,1305,1309,1310,1319,1323,1324,1326,1328,1333,1334,1336,1340,1341,1345,1346,1350,1355,1357,1359,1360,1364,1366,1369,1372,1373,1374,1376,1377,1379,1380,1381,1390,1391,1395,1399,1401,1402,1404,1406,1407,1408,1412,1416,1417,1418,1421,1423,1424,1428,1432,1438,1439,1445,1448,1449,1450,1452,1453,1454,1455,1457,1458,1459,1460,1461,1464,1465,1466,1467,1469,1471,1472,1473,1475,1476,1477,1478,1479,1488,1493,1494,1497,1500,1507,1510,1513,1515,1518,1522,1523,1529,1530,1537,1538,1540,1542,1545,1548,1550,1552,1560,1561,1567,1568,1571,1572,1577,1578,1579,1581,1588,1590,1592,1598,1603,1605,1611,1619,1620,1621,1624,1626,1636,1639,1640,1642,1643,1650,1651,1655,1657,1658,1661,1662,1666,1668,1671,1674,1677,1681,1682,1689,1690,1696,1701,1702,1703,1710,1711,1723,1724,1725,1727,1729,1730,1733,1738,1739,1741,1742,1748,1750,1754,1759,1761,1764,1765,1769,1777,1782,1784,1785,1791,1793,1795,1800,1801,1802,1807,1818,1819,1820,1821,1822,1824,1826,1830,1834,1835,1836,1838,1844,1848,1852,1855,1857,1859,1862,1863,1865,1870,1874,1879,1880,1881,1883,1886,1888,1889,1890,1893,1896,1897,1898,1901,1902,1905,1906,1910,1913,1918,1920,1922,1926,1930,1931,1932,1934,1935,1936,1937,1939,1941,1944,1945,1946,1950,1954,1959,1963,1976,1980,1991,1992,2001,2002,2003,2004,2008,2010,2013,2018,2024,2025,2029,2030,2032,2034,2037,2040,2042,2044,2046,2048,2049,2051,2052,2054,2065,2082,2084,2087,2090,2094,2098,2099,2103,2106,2110,2111,2116,2119,2122,2125,2127,2129,2131,2133,2134,2136,2137,2139,2140,2142,2143,2148,2154,2159,2160,2162,2164,2167,2169,2174,2178,2184,2189,2191,2197,2200,2201,2205,2206,2207,2208,2212,2213,2216,2220,2222,2223,2234,2237,2238,2246,2252,2253,2256,2260,2261,2262,2264,2268,2270,2271,2275,2277,2278,2287,2288,2295,2296,2299,2305,2308,2309,2311,2314,2318,2322,2324,2325,2327,2331,2334,2344,2349,2350,2351,2353,2355,2357,2358,2359,2363,2370,2372,2374,2375,2379,2380,2381,2382,2387,2389,2390,2394,2395,2396,2405,2411,2416,2417,2418,2419,2423,2424,2425,2426,2429,2430,2434,2436,2440,2442,2445,2448,2461,2462,2466,2469,2471,2473,2474,2476,2478,2482,2483,2487,
M23	1	M1,M10,M11,M12,M16,M17,M18,M19,M2,M20,M21,M22,M24,M25,M26,M28,M29,M3,M30,M31,M32,M33,M34,M35,M36,M37,M38,M4,M5,M6,M7,M8,M9	33	M27	1M13,M14,M15,M39,M40,M41,M42,M43	8	612	1,3,12,15,16,20,25,27,36,38,41,56,62,63,66,69,75,88,90,95,97,98,101,102,110,116,121,122,123,136,138,140,141,144,146,150,156,168,169,170,177,178,183,192,194,210,215,216,233,236,241,250,252,263,264,269,278,280,282,283,286,297,304,305,307,309,312,317,330,334,336,337,348,357,359,363,364,367,377,379,382,383,388,391,393,396,397,398,399,403,405,418,424,425,426,427,428,429,436,445,446,449,454,458,466,467,468,470,473,474,478,479,480,482,488,491,492,494,501,511,517,522,523,526,533,534,538,550,553,556,557,560,564,565,566,569,570,571,572,575,577,586,587,589,598,602,604,605,611,618,621,622,624,628,629,635,637,641,644,649,650,652,658,661,664,667,675,676,679,680,687,694,696,705,707,710,714,724,727,730,733,737,738,740,743,744,762,770,772,773,775,788,789,790,796,802,803,807,808,812,815,823,824,828,831,834,841,843,844,845,851,855,860,862,873,874,881,883,884,885,889,892,894,897,898,899,909,914,918,925,936,947,955,971,974,978,987,989,1006,1016,1018,1020,1021,1025,1033,1036,1042,1044,1045,1049,1051,1052,1054,1056,1060,1062,1063,1083,1087,1088,1089,1091,1092,1093,1111,1118,1126,1129,1131,1133,1134,1136,1137,1142,1144,1145,1148,1151,1152,1157,1158,1165,1168,1176,1184,1188,1190,1191,1192,1195,1206,1209,1210,1216,1230,1232,1233,1237,1238,1244,1247,1251,1255,1264,1266,1269,1276,1298,1301,1307,1311,1313,1317,1335,1337,1339,1347,1349,1352,1353,1358,1361,1362,1368,1371,1387,1388,1389,1393,1394,1398,1403,1409,1413,1414,1415,1419,1420,1434,1435,1442,1462,1470,1481,1483,1486,1487,1490,1492,1495,1496,1498,1499,1502,1505,1509,1511,1514,1517,1521,1527,1532,1536,1539,1556,1558,1563,1587,1589,1594,1595,1596,1600,1601,1606,1608,1609,1610,1614,1616,1622,1630,1633,1635,1638,1653,1659,1660,1669,1670,1685,1687,1688,1691,1692,1693,1694,1695,1698,1704,1708,1715,1716,1718,1719,1721,1726,1728,1740,1744,1747,1749,1752,1753,1760,1763,1766,1771,1772,1774,1779,1781,1787,1798,1799,1803,1804,1810,1811,1814,1815,1828,1829,1841,1846,1849,1854,1858,1860,1864,1866,1878,1882,1900,1903,1908,1909,1912,1914,1916,1917,1925,1927,1928,1940,1947,1949,1953,1955,1957,1958,1965,1966,1967,1968,1969,1972,1974,1975,1981,1982,1983,1993,1994,1998,2006,2007,2009,2012,2015,2023,2026,2033,2039,2041,2045,2055,2056,2057,2064,2066,2068,2075,2078,2080,2085,2086,2091,2101,2102,2105,2108,2109,2112,2113,2114,2118,2121,2123,2124,2126,2128,2132,2138,2141,2144,2146,2147,2149,2150,2157,2158,2161,2165,2166,2172,2173,2177,2183,2186,2188,2190,2192,2195,2199,2209,2210,2214,2215,2218,2224,2227,2228,2229,2230,2231,2245,2249,2250,2251,2254,2258,2265,2267,2276,2282,2289,2290,2291,2304,2307,2313,2315,2316,2321,2328,2329,2330,2332,2333,2338,2339,2340,2341,2342,2345,2354,2361,2362,2366,2373,2378,2383,2384,2393,2397,2398,2399,2402,2403,2409,2410,2413,2414,2422,2427,2431,2433,2435,2438,2441,2443,2449,2455,2459,2460,2463,2464,2467,2479,2485,2486,

Hope to be useful!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/537289.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

260道网络安全常见面试题汇总(附答案解析+配套资料)

以下为网络安全各个方向涉及的面试题,星数越多代表问题出现的几率越大,祝各位都能找到满意的工作。 注:所有的资料都整理成了PDF,面试题和答案将会持续更新,因为无论如何也不可能覆盖所有的面试题。 目录 一、渗透测试…

从内网护卫到零信任尖兵:腾讯iOA炼成记

腾讯既是企业产品的服务商又是使用者,很多产品最原始的出发点最早只是为了解决腾讯自身某一个需求,经过不断地发展完善和业务场景锤炼,最终进化成一个成熟的企服产品。本系列文章讲述的是这样一组Made in Tencent故事,这是系列的第…

广西高等教育学会高校教育技术委员会莅临瑞云科技考察交流

2023年3月18日上午11点整,广西高等教育学会高校教育技术专业委员会组织了一批来自广西各院校的专家老师,来到深圳市瑞云科技股份有限公司(以下简称瑞云科技)参观考察。瑞云科技是一家专注为视觉行业提供垂直云计算服务的公司&…

手敲MyBatis(十一章)-支持注解配置执行SQL

1.前言 这一章节从题目中也看出来我们要支持注解版的增删改查,可以在Mapper层的接口类的方法上写Sql语句,如:Insert,Update,Delete,Select的这几个基础Sql,如下图,这样就不用在Xml里…

2023年好用的设计图制作软件推荐

说到设计图制作软件,设计师当然最关注核心设计功能,包括预加载模板、图像数据库、界面和基本编辑功能。此外,还要考虑设计图制作软件是否可以协同工作。 1.即时设计 即时设计是一款「专业UI设计工具」,不受平台限制,…

Mybatis之介绍及使用

Mybatis介绍 是一款优秀的持久层框架,它支持自定义 SQL、存储过程以及高级映射; 特点 1.支持自定义SQL、存储过程 2.对原有的JDBC进行了封装,几乎消除了所有JDBC代码,让开发者只需关注SQL本身 3.支持XML和注解配置方式自定完成OR…

有哪些好用的pdf阅读软件?这样查阅不出错

PDF(Portable Document Format,便携式文档格式)是一种用于文档交换的文件格式。它可以在不同的操作系统、软件和设备上显示相同的文档,因此越来越多的人选择使用PDF文件格式来分享和保存文档。与传统的纸质文档相比,PD…

初识uni-app

初识uni-app:跨平台开发的神器 本文将为大家介绍uni-app,一款强大的跨平台App开发框架。我们将探讨其特点、优势以及如何快速上手开发一个简单的uni-app应用。 1. 什么是uni-app uni-app是由DCloud公司研发的一款基于Vue.js的开源跨平台应用开发框架。使…

客户自助服务:让您的客户自助购买

在我们这个数字优先的世界中,我们已经习惯了即时满足。对于品牌来说,这意味着在近乎即时的时间内为客户的问题提供解决方案和答案。花太长时间,您的客户不会满意。这就是提供客户自助服务可以对您的客户体验和满意度产生重大影响的地方。 当…

【MySQL学习】事务管理(Transaction)

文章目录 一、事务的基本认识1.1 事务的基本概念1.2 事务的基本属性1.3 支持事务的存储引擎 二、为什么要有事务三、事务的基本操作3.1 事务的提交方式3.2 事务的操作案例 四、事务的隔离级别4.1 对事务隔离性的初步理解4.2 四种隔离级别4.3 读未提交(Read Uncommit…

我能“C”——初阶结构体

目录 结构体 1.结构体的声明 1.1结构体的基础知识 1.2结构体的声明 1.3结构成员的类型 1.4结构体变量的定义和初始化 2. 结构体成员的访问 3.结构体传参 THE END 结构体 结构体类型的声明 结构体初始化 结构体成员访问 结构体传参 1.结构体的声明 1.1结构体的基础知…

单板硬件设计:存储器SD卡( NAND FLASH)

在单板设计中,无论是涉及到一个简易的CPU、MCU小系统或者是复杂的单板设计,都离不开存储器设计: 1、存储器介绍 存储器的分类大致可以划分如下: ROM和RAM指的都是半导体存储器,ROM在系统停止供电的时候仍然可以保持数…

防火墙可以“阻挡”黑客的进攻吗?

"防火墙"这个词大家应该都听说过或者应用过,每个人的电脑、手机几乎都会安装一些的主流的防火墙软件,工作的企事业单位网络里都会安装硬件防火墙。那么这些防火墙能阻挡住黑客的攻击吗? 一、首先我们需要知道防火墙的原理或者说主…

vue项目启动出现可选链?:操作符解析失败

问题描述:vue项目中引入了其他npm包,包中使用可选链操作符?:,本地npm run serve启动时,之前都正常,这次报错了,无法启动。 解决步骤(2步): 1. 安装:&#…

【算法思维】-- KMP算法

OJ须知: 一般而言,OJ在1s内能接受的算法时间复杂度:10e8 ~ 10e9之间(中值5*10e8)。在竞赛中,一般认为计算机1秒能执行 5*10e8 次计算。 时间复杂度取值范围o(log2n)大的离谱O(n)10e8O(nlog(n))10e6O(nsqrt(…

某神QQ机器人BOT搭建教程win系统

某神QQ机器人BOT搭建教程win系统 大家好我是艾西,今天跟大家分享的是某神qi鹅群机器人bot搭建方式以及详细的操作步骤。跟上艾西的节奏准备发车啦! 前言:(xxxx即为https)(zzz即为com) qi鹅群…

geoserver发布矢量切片服务理论与实战

geoserver发布矢量数据服务前几篇文章已经分享过了,但是在实际业务中,矢量数据shp文件有时候比较大,包含上百万完个点,发布完整的服务后,有时候,前端显示还是有点慢,毕竟是一次加载完成&#xf…

Verilog语法概述二:何为仿真?仿真可以在几个层面上进行?

Verilog 是一种用于数字逻辑电路设计的硬件描述语言,可以用来进行数字电路的仿真验证、时序分析、逻辑综合。 既是一种行为级(可用于电路的功能描述)描述语言又是一种结构性(可用于元器件及其之间的连接)描述语言。 …

day34_js

今日内容 零、 复习昨日 一、JS 零、 复习昨日 一、引言 1.1 JavaScript简介 JavaScript一种解释性脚本语言,是一种动态类型、弱类型、基于原型继承的语言,内置支持类型。它的解释器被称为JavaScript引擎,作为浏览器的一部分,广泛…

数据分类分级 数据识别-excel分类分级模版文件导入、解析

前面讲了数据分类分级 数据识别-实现部分敏感数据识别,本次针对模版导入展开,excel导入采用的是easyexcel 目录 easyexcel介绍easyexcel实战添加依赖读取数据监听器的实现数据读取方法读取结果上面图片是AI创作生成!如需咒语可私戳哦! easyexcel介绍 之前的excel导入解析…