- 有话无话,先上代码,正确与否,先给结论,可信有无,先出文献
- 计算物理,傅哥最强
- 真计算还得看SCU物拔(不是)(狗头)(骄傲)
- 这种方法的思想是利用插值公式来构造高精度的积分公式,然后用递归的方式来增加精度。它的主要优点是精度高,收敛迅速,并且非常适合计算高维积分。
- 接着,我们将这些子区间合并成更大的区间,然后在这些区间上再次构造级别为 $k+1$ 的高精度插值公式,计算出积分值。通过递归的方式,我们可以得到不同级别的积分值。最终,将这些积分值代入级别最高的插值公式中,就可以得到所求积分的高精度近似值。
示例代码
- 十一维数值积分
- 友情提示:不要运行哦,你的笔记本算不出来的。。。。。
- 这个和博主的编码能力无关,就是算不出来,不要杠,杠你就输了
- 这个是随机内存的问题,高维积分方法不能出这个问题
def f(x,y,z,w,u,v,i,o,p,k,l):
return x**2 + y**2 + z**2 +\
w**2 + u**2 + v**2 +\
i**2 + o**2 + p**2 +\
k**2 + l**2
def romberg_11d(f,x1,x2,y1,y2,z1,z2,\
w1,w2,u1,u2,v1,v2,\
i1,i2,o1,o2,p1,p2,\
k1,k2,l1,l2,\
eps=1e-6,n=50):
def trapezoid(f,a,b,n):
h = (b - a) / float(n)
s = 0.5*(f(a) + f(b))
for i in range(1, n):
s += f(a + i*h)
return h*s
def romberg(f,a,b,eps=1e-6,n=50):
R = [[0]*(n+1) for i in range(n+1)]
for i in range(1, n+1):
h = float(b-a)/(2**i)
R[i][1] = trapezoid(f, a, b, 2**(i-1))
for j in range(2, i+1):
R[i][j] = (4**(j-1)*R[i][j-1]-R[i-1][j-1])/(4**(j-1)-1)
if abs(R[i][i]-R[i-1][i-1]) < eps:
return R[i][i]
raise ValueError('romberg integration failed to converge')
def integrand_l(x,y,z,w,u,v,i,o,p,k):
return romberg(lambda l:f(x,y,z,w,u,v,i,o,p,k,l),l1,l2,eps,n)
def integrand_k(x,y,z,w,u,v,i,o,p):
return romberg(lambda k:integrand_l(x,y,z,w,u,v,i,o,p,k),k1,k2,eps,n)
def integrand_p(x,y,z,w,u,v,i,o):
return romberg(lambda p:integrand_k(x,y,z,w,u,v,i,o,p),p1,p2,eps,n)
def integrand_o(x,y,z,w,u,v,i):
return romberg(lambda o:integrand_p(x,y,z,w,u,v,i,o),o1,o2,eps,n)
def integrand_i(x,y,z,w,u,v):
return romberg(lambda i:integrand_o(x,y,z,w,u,v,i),i1,i2,eps,n)
def integrand_v(x,y,z,w,u):
return romberg(lambda v:integrand_i(x,y,z,w,u,v),v1,v2,eps,n)
def integrand_u(x,y,z,w):
return romberg(lambda u:integrand_v(x,y,z,w,u),u1,u2,eps,n)
def integrand_w(x,y,z):
return romberg(lambda w:integrand_u(x,y,z,w),w1,w2,eps,n)
def integrand_z(x,y):
return romberg(lambda z:integrand_w(x,y,z),z1,z2,eps,n)
def integrand_y(x):
return romberg(lambda y:integrand_z(x,y),y1,y2,eps,n)
return romberg(lambda x:integrand_y(x),x1,x2,eps,n)
#x,y,z,w,u,v,i,o,p,k,l
result = romberg_11d(f,-1,1,-1,1,-1,1,\
-1,1,-1,1,-1,1,\
-1,1,-1,1,-1,1,\
-1,1,-1,1)
print(result)
-
四维积分代码
def f(x,y,z,w):
return x**2 + y**2 + z**2 + w**2
def romberg_4d(f,x1,x2,y1,y2,z1,z2,w1,w2,eps=1e-6,n=50):
def trapezoid(f,a,b,n):
h = (b - a) / float(n)
s = 0.5*(f(a) + f(b))
for i in range(1, n):
s += f(a + i*h)
return h*s
def romberg(f,a,b,eps=1e-6,n=50):
R = [[0]*(n+1) for i in range(n+1)]
for i in range(1, n+1):
h = float(b-a)/(2**i)
R[i][1] = trapezoid(f, a, b, 2**(i-1))
for j in range(2, i+1):
R[i][j] = (4**(j-1)*R[i][j-1]-R[i-1][j-1])/(4**(j-1)-1)
if abs(R[i][i]-R[i-1][i-1]) < eps:
return R[i][i]
raise ValueError('romberg integration failed to converge')
def integrand_w(x,y,z):
return romberg(lambda w:f(x,y,z,w),w1,w2,eps,n)
def integrand_z(x,y):
return romberg(lambda z:integrand_w(x,y,z),z1,z2,eps,n)
def integrand_y(x):
return romberg(lambda y:integrand_z(x,y),y1,y2,eps,n)
return romberg(lambda x:integrand_y(x),x1,x2,eps,n)
result = romberg_4d(f,-1,1,-1,1,-1,1,-1,1)
print(result)
-
result
============= RESTART: 四重Romberg.py =============
21.333333333333332
>>>
Romberg数值积分原理
- 微积分基本定理(Newton Leibniz)
- 机械求积法
- 插值型求积
- 梯形公式
- 等距节点的N-C公式
- 辛普森公式
- 复合求积公式
- 高斯求积公式
哈哈,刚才列出来的,全部不用记住,因为根本记不下来,考试前背一下就ok,至于工作的时候,你不会查手册吗????
蒙特卡洛模拟替代
- 蒙特卡洛方法的优势在于它具有很强的适应性和灵活性,能够用于求解一些非常复杂的问题。与其他数值计算方法相比,蒙特卡洛方法不需要求解解析解,因此能够处理一些难以求解的问题,并且不会受到算法复杂度的限制。此外,蒙特卡洛方法可以直接利用随机抽样技术来求解问题,因此具有很好的并行计算能力,能够利用大规模计算资源来加速计算。
- 很好,那我们举一个例子吧
- 计算高维空间中球的体积:
import numpy as np
import scipy.special as spi
import matplotlib.pyplot as plt
np.random.seed(0)
import time
def prod(n):
p = 1
for i in range(1,n+1):
p *= i
return p
def f(n):
if n%2==0:
k = int(n/2)
return np.pi**(k)/prod(k)
elif n%2==1:
k = int((n-1)/2)
return np.pi**k*prod(k)*2**n/prod(n)
def main(Num=1e5,dim=4):
assert(dim>=2),"dim should greater than 2!!!"
Sum = 0
#start = time.time()
for i in range(int(Num)):
x = np.random.random(dim)
p = sum(x**2)
if p<=1:
Sum += 1
#end = time.time()
#print("Used:",end-start)
#print("Volume:",Sum/Num*(2**dim))
#print("Theory:",f(dim))
return Sum/Num*(2**dim),f(dim)
Dim = [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
V = [0 for i in range(len(Dim))]
F = [0 for i in range(len(Dim))]
for i in range(len(Dim)):
V[i],F[i] = main(dim=Dim[i])
plt.scatter(range(len(Dim)),V,c="red")
plt.scatter(range(len(Dim)),F,c="blue")
plt.plot(range(len(Dim)),V,c="red",label="volume")
plt.plot(range(len(Dim)),F,c="blue",label="Theory")
plt.legend()
plt.pause(0.01)
- 显然这个精度可能不太够,因此我们需要提高抽样的数量至1e6
- 事实上,依然是不够的,你的笔记本性能 ,数学能力,编程能力是一个不可能三角(针对有限的大学课程而言)
梯形法:四重积分为例
- 蒙特卡洛方法可能不能满足许多数学推导爱好者的想法,那我们用梯形法实现一下
import numpy as np
def f(x1, x2, x3, x4):
return x1+x2+x3+x4
def trapezoid_integration(f, a1, b1, a2, b2, a3, b3, a4, b4, n1, n2, n3, n4):
h1 = (b1 - a1) / n1
h2 = (b2 - a2) / n2
h3 = (b3 - a3) / n3
h4 = (b4 - a4) / n4
x1 = np.linspace(a1, b1, n1+1)
x2 = np.linspace(a2, b2, n2+1)
x3 = np.linspace(a3, b3, n3+1)
x4 = np.linspace(a4, b4, n4+1)
integral = 0
for i in range(n1):
for j in range(n2):
for k in range(n3):
for l in range(n4):
integral += (f(x1[i], x2[j], x3[k], x4[l]) + f(x1[i+1], x2[j], x3[k], x4[l]) +
f(x1[i], x2[j+1], x3[k], x4[l]) + f(x1[i+1], x2[j+1], x3[k], x4[l]) +
f(x1[i], x2[j], x3[k+1], x4[l]) + f(x1[i+1], x2[j], x3[k+1], x4[l]) +
f(x1[i], x2[j+1], x3[k+1], x4[l]) + f(x1[i+1], x2[j+1], x3[k+1], x4[l]) +
f(x1[i], x2[j], x3[k], x4[l+1]) + f(x1[i+1], x2[j], x3[k], x4[l+1]) +
f(x1[i], x2[j+1], x3[k], x4[l+1]) + f(x1[i+1], x2[j+1], x3[k], x4[l+1]) +
f(x1[i], x2[j], x3[k+1], x4[l+1]) + f(x1[i+1], x2[j], x3[k+1], x4[l+1]) +
f(x1[i], x2[j+1], x3[k+1], x4[l+1]) + f(x1[i+1], x2[j+1], x3[k+1], x4[l+1])) / 16 * h1 * h2 * h3 * h4
return integral
a1, b1, n1 = 0, 1, 10
a2, b2, n2 = 0, 1, 10
a3, b3, n3 = 0, 1, 10
a4, b4, n4 = 0, 1, 10
integral = trapezoid_integration(f, a1, b1, a2, b2, a3, b3, a4, b4, n1, n2, n3, n4)
print("INTEGER:", integral)
INTEGER: 2.0000000000000275
现代方法
- 不用想,计算软件不可能这么处理高维积分
- 数值分析这么多年不可能没有发展出点别的神话操作
- 抽象代数也不是白学的
- 列出一些参考文献
-
徐利治,周蕴时.高维数值积分 [M]. 北京:科学出版社, 1980
-
柯召,孙琦.数论讲义 [M]. 北京:高等教育出版社, 200 1.
-
吕涛,石济民,林振宝.分裂外推与组合技巧 [M]. 北京:科学出版社, 1988.
-
- 讨论加QQ:3052408134