第七章 TensorFlow实现卷积神经网络--代码调试

news2024/12/25 12:52:51

注:实验工具为jupyter,该python环境为3.7并安装了1.14.0版本的tensorflow ,这是本人基于最新版的anaconda下新建的环境,至于在头歌环境平台及其他平台并未验证,而我们需要安装和更新包也需要在自己新建的环境命令行下才有效。

 //这里建议大家先打开主菜单,找到anaconda,打开315电脑上名为tf的jupyter,在这里面进行代码运行,如果需要安装包,也请在名为tf下的prompt里面输入命令。

 第一步:把源代码里的文件放到相关路径下

 本人这里放到了C:\Users\D415,也就是jupyter运行结果的保存路径,因为我后面统一设置路径为.\。为节约时间,以下代码的generations统一设置为500

//也可以在jupyter页面直接导入,或者更改源代码里面的对应路径 

7.2TensorFlow实现简单的CNN

//pip install  包名 -i https://pypi.tuna.tsinghua.edu.cn/simple/  (提高安装效率)

pip install matplotlib
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 创建计算图
sess = tf.Session()

# 加载数据集
data_dir = 'temp'
mnist = input_data.read_data_sets(data_dir, one_hot=False)

# 将图像数据转换成28*28的数组
train_xdata = np.array([np.reshape(x, (28, 28)) for x in mnist.train.images])
test_xdata = np.array([np.reshape(x, (28, 28)) for x in mnist.test.images])

# 将数据预处理成独热编码
train_labels = mnist.train.labels
test_labels = mnist.test.labels

# 设置模型参数
batch_size = 100
learning_rate = 0.001
evaluation_size = 500
image_width = train_xdata[0].shape[0]
image_height = train_xdata[0].shape[1]
target_size = np.max(train_labels) + 1
num_channels = 1  # greyscale = 1 channel
generations = 500#次数
eval_every = 5
conv1_features = 25
conv2_features = 50
max_pool_size1 = 2  # NxN window for 1st max pool layer
max_pool_size2 = 2  # NxN window for 2nd max pool layer
fully_connected_size1 = 100

# 声明模型占位符
x_input_shape = (batch_size, image_width, image_height, num_channels)
x_input = tf.placeholder(tf.float32, shape=x_input_shape)
y_target = tf.placeholder(tf.int32, shape=(batch_size))
eval_input_shape = (evaluation_size, image_width, image_height, num_channels)
eval_input = tf.placeholder(tf.float32, shape=eval_input_shape)
eval_target = tf.placeholder(tf.int32, shape=(evaluation_size))

# 声明模型卷积层权重值参数和偏置值
conv1_weight = tf.Variable(tf.truncated_normal([4, 4, num_channels, conv1_features],
                                               stddev=0.1, dtype=tf.float32))
conv1_bias = tf.Variable(tf.zeros([conv1_features], dtype=tf.float32))

conv2_weight = tf.Variable(tf.truncated_normal([4, 4, conv1_features, conv2_features],
                                               stddev=0.1, dtype=tf.float32))
conv2_bias = tf.Variable(tf.zeros([conv2_features], dtype=tf.float32))

# 声明模型全连接层权重参数和偏置值
resulting_width = image_width // (max_pool_size1 * max_pool_size2)
resulting_height = image_height // (max_pool_size1 * max_pool_size2)
full1_input_size = resulting_width * resulting_height * conv2_features
full1_weight = tf.Variable(tf.truncated_normal([full1_input_size, 
                  fully_connected_size1],
                  stddev=0.1, dtype=tf.float32))
full1_bias = tf.Variable(tf.truncated_normal([fully_connected_size1], stddev=0.1, dtype=tf.float32))
full2_weight = tf.Variable(tf.truncated_normal([fully_connected_size1, 
                  target_size], stddev=0.1, dtype=tf.float32))
full2_bias = tf.Variable(tf.truncated_normal([target_size], stddev=0.1, 
                dtype=tf.float32))

# 初始化模型
def my_conv_net(conv_input_data):
    # 第1层Conv-ReLU-MaxPool层
    conv1 = tf.nn.conv2d(conv_input_data, conv1_weight, 
              strides=[1, 1, 1, 1], padding='SAME')
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
    max_pool1 = tf.nn.max_pool(relu1, ksize=[1, max_pool_size1, 
                  max_pool_size1, 1],
                  strides=[1, max_pool_size1, max_pool_size1, 1], 
                  padding='SAME')

    # 第2层Conv-ReLU-MaxPool层
    conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 1, 1, 1], 
              padding='SAME')
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
    max_pool2 = tf.nn.max_pool(relu2, ksize=[1, max_pool_size2, 
                  max_pool_size2, 1],
                  strides=[1, max_pool_size2, max_pool_size2, 1], 
                  padding='SAME')

    # 将输出数据转换成方便全连接层接收的1*N形式
    final_conv_shape = max_pool2.get_shape().as_list()
    final_shape = final_conv_shape[1] * final_conv_shape[2] * final_conv_shape[3]
    flat_output = tf.reshape(max_pool2, [final_conv_shape[0], 
                    final_shape])

    # 第1个全连接层
    fully_connected1 = tf.nn.relu(tf.add(tf.matmul(flat_output, 
                           full1_weight), full1_bias))

    # 第2个全连接层
    final_model_output = tf.add(tf.matmul(fully_connected1, 
                             full2_weight), full2_bias)
    
    return final_model_output

model_output = my_conv_net(x_input)
test_model_output = my_conv_net(eval_input)

# 指定损失函数为softmax函数为损失函数 
loss = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(
        logits=model_output, labels=y_target))

# 指定准确度函数以评估模型精度
prediction = tf.nn.softmax(model_output)
test_prediction = tf.nn.softmax(test_model_output)


# 创建准确度函数。
def get_accuracy(logits, targets):
    batch_predictions = np.argmax(logits, axis=1)
    num_correct = np.sum(np.equal(batch_predictions, targets))
    return 100. * num_correct/batch_predictions.shape[0]

# 创建优化器
my_optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
train_step = my_optimizer.minimize(loss)

# 初始化变量
init = tf.global_variables_initializer()
sess.run(init)

# 开始训练
train_loss = []
train_acc = []
test_acc = []
for i in range(generations):
    rand_index = np.random.choice(len(train_xdata), size=batch_size)
    rand_x = train_xdata[rand_index]
    rand_x = np.expand_dims(rand_x, 3)
    rand_y = train_labels[rand_index]
    train_dict = {x_input: rand_x, y_target: rand_y}
    
    sess.run(train_step, feed_dict=train_dict)
    temp_train_loss, temp_train_preds = sess.run([loss, prediction], feed_dict=train_dict)
    temp_train_acc = get_accuracy(temp_train_preds, rand_y)
    
    if (i+1) % eval_every == 0:
        eval_index = np.random.choice(len(test_xdata), size=evaluation_size)
        eval_x = test_xdata[eval_index]
        eval_x = np.expand_dims(eval_x, 3)
        eval_y = test_labels[eval_index]
        test_dict = {eval_input: eval_x, eval_target: eval_y}
        test_preds = sess.run(test_prediction, feed_dict=test_dict)
        temp_test_acc = get_accuracy(test_preds, eval_y)
        
        # 记录并输出结果
        train_loss.append(temp_train_loss)
        train_acc.append(temp_train_acc)
        test_acc.append(temp_test_acc)
        acc_and_loss = [(i+1), temp_train_loss, temp_train_acc, temp_test_acc]
        acc_and_loss = [np.round(x, 2) for x in acc_and_loss]
        print('Generation # {}. Train Loss: {:.2f}. Train Acc (Test Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))
    
    
# 通过Matlotlib模块绘制损失函数和准确度 
eval_indices = range(0, generations, eval_every)
plt.plot(eval_indices, train_loss, 'k-')
plt.title('Softmax Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Softmax Loss')
plt.show()

plt.plot(eval_indices, train_acc, 'k-', label='Train Set Accuracy')
plt.plot(eval_indices, test_acc, 'r--', label='Test Set Accuracy')
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

# 输出最新结果中的抽样图(此处选取了4幅)
actuals = rand_y[0:4]
predictions = np.argmax(temp_train_preds, axis=1)[0:4]
images = np.squeeze(rand_x[0:4])

Nrows = 2
Ncols = 3
for i in range(4):
    plt.subplot(Nrows, Ncols, i+1)
    plt.imshow(np.reshape(images[i], [28, 28]), cmap='Greys_r')
    plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' + 
                str(predictions[i]),
                fontsize=10)
    frame = plt.gca()
    frame.axes.get_xaxis().set_visible(False)
    frame.axes.get_yaxis().set_visible(False)

运行结果展示:

 

 

 7.2TensorFlow实现进阶CNN

import os
import sys
import tarfile
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from six.moves import urllib
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
batch_size = 128
data_dir = 'temp'
output_every = 50
generations = 500
eval_every = 500
image_height = 32
image_width = 32
crop_height = 24
crop_width = 24
num_channels = 3
num_targets = 10
extract_folder = 'cifar-10-batches-bin'
learning_rate = 0.1
lr_decay = 0.1
num_gens_to_wait = 250.0
image_vec_length = image_height * image_width * num_channels
record_length = 1 + image_vec_length # ( + 1 for the 0-9 label)
data_dir = 'temp'
def read_cifar_files(filename_queue, distort_images = True):
    reader = tf.FixedLengthRecordReader(record_bytes=record_length)
    key, record_string = reader.read(filename_queue)
    record_bytes = tf.decode_raw(record_string, tf.uint8)
    image_label = tf.cast(tf.slice(record_bytes, [0], [1]), tf.int32)
  
    # 读取图片
    image_extracted = tf.reshape(tf.slice(record_bytes, [1], 
                         [image_vec_length]),
                         [num_channels, image_height, image_width])
    
    # 调整图片的规格
    image_uint8image = tf.transpose(image_extracted, [1, 2, 0])
    reshaped_image = tf.cast(image_uint8image, tf.float32)
    # 随机裁剪图片
    final_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                     crop_width, crop_height)
    if distort_images:
        # 对图片进行随机的剪裁、翻转和亮度调节
        final_image = tf.image.random_flip_left_right(final_image)
        final_image = tf.image.random_brightness(final_image,max_delta=63)
        final_image = tf.image.random_contrast(final_image,lower=0.2, upper=1.8)

    # 白化处理去除各观测信号之间的相关性
    final_image = tf.image.per_image_standardization(final_image)
    return(final_image, image_label)
def input_pipeline(batch_size, train_logical=True):
    if train_logical:
        files = [os.path.join(data_dir, extract_folder, 'data_batch_{}.bin'.format(i)) for i in range(1,6)]
    else:
        files = [os.path.join(data_dir, extract_folder, 'test_batch.bin')]
    filename_queue = tf.train.string_input_producer(files)
    image, label = read_cifar_files(filename_queue)
    #通过min_after_dequeue参数设置抽样图片缓存最小值
    min_after_dequeue = 5000
    capacity = min_after_dequeue + 3 * batch_size
#tf.train.batch表示样本和样本标签, batch_size是返回的一个batch样本集的
#样本个数。capacity是队列中的容量。这主要是按顺序组合成一个batch。
    example_batch, label_batch = tf.train.shuffle_batch([image, label],batch_size=batch_size, capacity=capacity,min_after_dequeue=min_after_dequeue)
    return(example_batch, label_batch)
def cifar_cnn_model(input_images, batch_size, train_logical=True):
    def truncated_normal_var(name, shape, dtype):
        return(tf.get_variable(name=name, shape=shape, dtype=dtype, initializer=tf.truncated_normal_initializer(stddev=0.05)))
    def zero_var(name, shape, dtype):
        return(tf.get_variable(name=name, shape=shape, dtype=dtype, initializer=tf.constant_initializer(0.0)))
    
    # 第一层卷积层
    with tf.variable_scope('conv1') as scope:
        # 卷积核尺寸为5x5对应3个色彩通道,创建64个特征 
        conv1_kernel = truncated_normal_var(name='conv_kernel1', shape=[5, 5, 3, 64], dtype=tf.float32)
        # 设定卷积操作的步长值为1
        conv1 = tf.nn.conv2d(input_images, conv1_kernel, [1, 1, 1, 1], padding='SAME')
        # 初始化并添加偏置项
        conv1_bias = zero_var(name='conv_bias1', shape=[64], dtype=tf.float32)
        conv1_add_bias = tf.nn.bias_add(conv1, conv1_bias)
        # 指定激活函数为ReLU函数
        relu_conv1 = tf.nn.relu(conv1_add_bias)
    
    # 最大池化操作
    pool1 = tf.nn.max_pool(relu_conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],padding='SAME', name='pool_layer1')
    
    # 局部响应归一化
    norm1 = tf.nn.lrn(pool1, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm1')

    # 第二层卷积层
    with tf.variable_scope('conv2') as scope:
        # 卷积核规格为5x5, 再次创建64个特征
        conv2_kernel = truncated_normal_var(name='conv_kernel2', shape=[5, 5, 64, 64], dtype=tf.float32)
        # 指定卷积操作的步长值为1
        conv2 = tf.nn.conv2d(norm1, conv2_kernel, [1, 1, 1, 1], padding='SAME')
        # 初始化参数并添加偏置项
        conv2_bias = zero_var(name='conv_bias2', shape=[64], dtype=tf.float32)
        conv2_add_bias = tf.nn.bias_add(conv2, conv2_bias)
        # 指定激活函数为ReLU函数
        relu_conv2 = tf.nn.relu(conv2_add_bias)
    
    # 最大池化
    pool2 = tf.nn.max_pool(relu_conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool_layer2')    
    
    # 局部响应归一化
    norm2 = tf.nn.lrn(pool2, depth_radius=5, bias=2.0, alpha=1e-3, beta=0.75, name='norm2')
    
    # 调整输出数据的格式以适应全连接层
    reshaped_output = tf.reshape(norm2, [batch_size, -1])
    reshaped_dim = reshaped_output.get_shape()[1].value
    
    # 第一层全连接层
    with tf.variable_scope('full1') as scope:
        # 指定384个节点
        full_weight1 = truncated_normal_var(name='full_mult1', 
                          shape=[reshaped_dim, 384], dtype=tf.float32)
        full_bias1 = zero_var(name='full_bias1', shape=[384], 
                        dtype=tf.float32)
        full_layer1 = tf.nn.relu(tf.add(tf.matmul(reshaped_output, 
                         full_weight1), full_bias1))

    # 第二个全连接层
    with tf.variable_scope('full2') as scope:
        # 指定192个节点.
        full_weight2 = truncated_normal_var(name='full_mult2', 
                          shape=[384, 192], dtype=tf.float32)
        full_bias2 = zero_var(name='full_bias2', shape=[192], 
                     	dtype=tf.float32)
        full_layer2 = tf.nn.relu(tf.add(tf.matmul(full_layer1, 
        				 full_weight2), full_bias2))

    # 第三层全连接层,将第二层全连接层的192个节点连接到10个输出分类
    with tf.variable_scope('full3') as scope:
        full_weight3 = truncated_normal_var(name='full_mult3', shape=[192, num_targets], dtype=tf.float32)
        full_bias3 =  zero_var(name='full_bias3',
                       	 shape=[num_targets], dtype=tf.float32)
        final_output = tf.add(tf.matmul(full_layer2, 
                          full_weight3), full_bias3)
        
    return(final_output)

def cifar_loss(logits, targets):
    # Get rid of extra dimensions and cast targets into integers
    targets = tf.squeeze(tf.cast(targets, tf.int32))
    # 计算评估值与目标值的Sofltmax交叉熵
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=targets)
    # 求解基于batch size的平均损失值
    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
    return(cross_entropy_mean)

def train_step(loss_value, generation_num):
    model_learning_rate = tf.train.exponential_decay(learning_rate,generation_num, num_gens_to_wait, lr_decay, staircase=True)
    my_optimizer = tf.train.GradientDescentOptimizer(model_learning_rate)
    train_step = my_optimizer.minimize(loss_value)
    return(train_step)

def accuracy_of_batch(logits, targets):
    # 指定目标向量为整数型,并去除extra dimensions
    targets = tf.squeeze(tf.cast(targets, tf.int32))
    # 获取logit 回归最大的值作为预测值
    batch_predictions = tf.cast(tf.argmax(logits, 1), tf.int32)
    # 确保不同batch间的值相等
    predicted_correctly = tf.equal(batch_predictions, targets)
    # 计算准确度
    accuracy = tf.reduce_mean(tf.cast(predicted_correctly, tf.float32))
    return(accuracy)

# 初始化图像管道
images, targets = input_pipeline(batch_size, train_logical=True)
# 从图像管道获取测试图像和目标图像的batch
test_images, test_targets = input_pipeline(batch_size, train_logical=False)

with tf.variable_scope('model_definition') as scope:
    # 声明训练网络模型
    model_output = cifar_cnn_model(images, batch_size)
    # 通过scope.reuse_variables()保存模型的参数,方便以后重用
    scope.reuse_variables()
    test_output = cifar_cnn_model(test_images, batch_size)

#声明损失函数
loss = cifar_loss(model_output, targets)
#声明准确度函数
accuracy = accuracy_of_batch(test_output, test_targets)
#声明命迭代变量
generation_num = tf.Variable(0, trainable=False)
train_op = train_step(loss, generation_num)
init = tf.global_variables_initializer()
sess.run(init)
tf.train.start_queue_runners(sess=sess)
train_loss = []
test_accuracy = []
for i in range(generations):
    _, loss_value = sess.run([train_op, loss])
    
    if (i+1) % output_every == 0:
        train_loss.append(loss_value)
        output = 'Generation {}: Loss = {:.5f}'.format((i+1), loss_value)
        print(output)
    
    if (i+1) % eval_every == 0:
        [temp_accuracy] = sess.run([accuracy])
        test_accuracy.append(temp_accuracy)
        acc_output = ' --- Test Accuracy = {:.2f}%.'.format(100.*temp_accuracy)
        print(acc_output)
eval_indices = range(0, generations, eval_every)
output_indices = range(0, generations, output_every)

plt.plot(output_indices, train_loss, 'k-')
plt.title('Softmax Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Softmax Loss')
plt.show()

plt.plot(eval_indices, test_accuracy, 'k-')
plt.title('Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.show()

运行结果展示:

7.4实现图片风格渲染 

pip install scipy
pip install imgaug

这里源代码并不能展示图片,下面给出由吴金龙同学改进的代码:

import os
import scipy.io
import scipy.misc
import imageio.v2 as imageio
from skimage.transform import resize
from operator import mul
from functools import reduce
import numpy as np
from PIL import Image
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
 
# 指定原始图片与风格图片的文件夹
original_image_file = r'.\images\cover.jpg'
style_image_file = r'.\images\starry_night.jpg'
 
# 设置模型参数
vgg_path = r'.\imagenet-vgg-verydeep-19.mat'
original_image_weight = 5.0
style_image_weight = 500.0
regularization_weight = 100
learning_rate = 10
generations = 500
output_generations = 25
beta1 = 0.9
beta2 = 0.999
 
 
# 读取图片
original_image = imageio.imread(original_image_file)
style_image = imageio.imread(style_image_file)
 
# 获取目标规格并使风格图像与之相同
target_shape = original_image.shape
style_image = resize(style_image, target_shape)
 
# 设置VGG-19 Layer
vgg_layers = ['conv1_1', 'relu1_1',
              'conv1_2', 'relu1_2', 'pool1',
              'conv2_1', 'relu2_1',
              'conv2_2', 'relu2_2', 'pool2',
              'conv3_1', 'relu3_1',
              'conv3_2', 'relu3_2',
              'conv3_3', 'relu3_3',
              'conv3_4', 'relu3_4', 'pool3',
              'conv4_1', 'relu4_1',
              'conv4_2', 'relu4_2',
              'conv4_3', 'relu4_3',
              'conv4_4', 'relu4_4', 'pool4',
              'conv5_1', 'relu5_1',
              'conv5_2', 'relu5_2',
              'conv5_3', 'relu5_3',
              'conv5_4', 'relu5_4']
 
 
# 提取权重和矩阵方法
def extract_net_info(path_to_params):
    vgg_data = scipy.io.loadmat(path_to_params)
    normalization_matrix = vgg_data['normalization'][0][0][0]
    mat_mean = np.mean(normalization_matrix, axis=(0,1))
    network_weights = vgg_data['layers'][0]
    return mat_mean, network_weights
    
 
# 创建VGG-19 神经网络
def vgg_network(network_weights, init_image):
    network = {}
    image = init_image
 
    for i, layer in enumerate(vgg_layers):
        if layer[0] == 'c':
            weights, bias = network_weights[i][0][0][0][0]
            weights = np.transpose(weights, (1, 0, 2, 3))
            bias = bias.reshape(-1)
            conv_layer = tf.nn.conv2d(image, tf.constant(weights), (1, 1, 1, 1), 'SAME')
            image = tf.nn.bias_add(conv_layer, bias)
        elif layer[0] == 'r':
            image = tf.nn.relu(image)
        else:  # pooling
            image = tf.nn.max_pool(image, (1, 2, 2, 1), (1, 2, 2, 1), 'SAME')
        network[layer] = image
    return network
 
# 定义将哪一层网络用于原始图片还是风格图片
original_layers = ['relu4_2', 'relu5_2']
style_layers = ['relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 'relu5_1']
 
# 获取网络的参数
normalization_mean, network_weights = extract_net_info(vgg_path)
 
shape = (1,) + original_image.shape
style_shape = (1,) + style_image.shape
original_features = {}
style_features = {}
 
# 设置风格权重
style_weights = {l: 1./(len(style_layers)) for l in style_layers}
 
# 计算原始图片的特征值
g_original = tf.Graph()
with g_original.as_default(), tf.Session() as sess1:
    image = tf.placeholder('float', shape=shape)
    vgg_net = vgg_network(network_weights, image)
    original_minus_mean = original_image - normalization_mean
    original_norm = np.array([original_minus_mean])
    for layer in original_layers:
        original_features[layer] = vgg_net[layer].eval(feed_dict={image: original_norm})
 
# 获取风格图片的网络层
g_style = tf.Graph()
with g_style.as_default(), tf.Session() as sess2:
    image = tf.placeholder('float', shape=style_shape)
    vgg_net = vgg_network(network_weights, image)
    style_minus_mean = style_image - normalization_mean
    style_norm = np.array([style_minus_mean])
    for layer in style_layers:
        features = vgg_net[layer].eval(feed_dict={image: style_norm})
        features = np.reshape(features, (-1, features.shape[3]))
        gram = np.matmul(features.T, features) / features.size
        style_features[layer] = gram
 
# 根据损失值进行图片的合并
with tf.Graph().as_default():
    # 获取网络参数
    initial = tf.random_normal(shape) * 0.256
    init_image = tf.Variable(initial)
    vgg_net = vgg_network(network_weights, init_image)
 
    # 原始图片的损失值
    original_layers_w = {'relu4_2': 0.5, 'relu5_2': 0.5}
    original_loss = 0
    for o_layer in original_layers:
        temp_original_loss = original_layers_w[o_layer] * original_image_weight *\
                             (2 * tf.nn.l2_loss(vgg_net[o_layer] - original_features[o_layer]))
        original_loss += (temp_original_loss / original_features[o_layer].size)
 
    # 风格图片的损失值
    style_loss = 0
    style_losses = []
    for style_layer in style_layers:
        layer = vgg_net[style_layer]
        feats, height, width, channels = [x.value for x in layer.get_shape()]
        size = height * width * channels
        features = tf.reshape(layer, (-1, channels))
        style_gram_matrix = tf.matmul(tf.transpose(features), features) / size
        style_expected = style_features[style_layer]
        style_losses.append(style_weights[style_layer] * 2 *
                            tf.nn.l2_loss(style_gram_matrix - style_expected) /
                            style_expected.size)
    style_loss += style_image_weight * tf.reduce_sum(style_losses)
 
    total_var_x = reduce(mul, init_image[:, 1:, :, :].get_shape().as_list(), 1)
    total_var_y = reduce(mul, init_image[:, :, 1:, :].get_shape().as_list(), 1)
    first_term = regularization_weight * 2
    second_term_numerator = tf.nn.l2_loss(init_image[:, 1:, :, :] - init_image[:, :shape[1]-1, :, :])
    second_term = second_term_numerator / total_var_y
    third_term = (tf.nn.l2_loss(init_image[:, :, 1:, :] - init_image[:, :, :shape[2]-1, :]) / total_var_x)
    total_variation_loss = first_term * (second_term + third_term)
 
    # 合并后的损失值
    loss = original_loss + style_loss + total_variation_loss
 
    # 声明算法操作
    optimizer = tf.train.AdamOptimizer(learning_rate, beta1, beta2)
    train_step = optimizer.minimize(loss)
 
    # 初始化全部变量并开始操作
    with tf.Session() as sess:
        tf.global_variables_initializer().run()
        for i in range(generations):
 
            train_step.run()
            # 输出跟新并保存最新的输出
            if (i+1) % output_generations == 0:
                print('Generation {} out of {}, loss: {}'.format(i + 1, generations,sess.run(loss)))
                image_eval = init_image.eval()
                best_image_add_mean = image_eval.reshape(shape[1:]) + normalization_mean
                output_file = r'.\temp_output_{}.jpg'.format(i)
                if best_image_add_mean.shape != (1, 1, 437, 690, 3):
                # 如果形状不正确,则需要进行调整
                    best_image_add_mean = np.reshape(best_image_add_mean, (437, 690, 3))
                    # 检查调整后的形状
                    if best_image_add_mean.shape == (437, 690, 3):
                        # 如果调整后的形状正确,则继续处理
                        pass
                    else:
                        # 如果调整后的形状仍然不正确,则引发异常
                        raise ValueError("Array shape is not valid.")
                else:
                    # 如果形状正确,则不需要进行调整
                    best_image_add_mean = np.squeeze(best_image_add_mean)
                # 将数组转换为float32类型
                best_image_add_mean = best_image_add_mean.astype(np.float32)
                # 转换数组类型
                best_image_add_mean = (best_image_add_mean * 255).astype(np.uint8)
                # 调整数组形状
                best_image_add_mean = np.transpose(best_image_add_mean, (2, 0, 1))
                # 创建PIL图像对象
                pil_image = Image.fromarray(best_image_add_mean.transpose(1, 2, 0))
                # 保存图像
                pil_image.save(output_file)
 
        # 保存最终图片
        image_eval = init_image.eval()
        best_image_add_mean = image_eval.reshape(shape[1:]) + normalization_mean
        output_file = r'.\final_output.jpg'
        best_image_add_mean = best_image_add_mean.astype(np.float32)
        if best_image_add_mean.shape != (1, 1, 437, 690, 3):
            # 如果形状不正确,则需要进行调整
            best_image_add_mean = np.reshape(best_image_add_mean, (437, 690, 3))
            # 检查调整后的形状
            if best_image_add_mean.shape == (437, 690, 3):
        # 如果调整后的形状正确,则继续处理
                pass
            else:
        # 如果调整后的形状仍然不正确,则引发异常
                raise ValueError("Array shape is not valid.")
        else:
        # 如果形状正确,则不需要进行调整
            best_image_add_mean = np.squeeze(best_image_add_mean)
        # 将数组转换为float32类型
        best_image_add_mean = best_image_add_mean.astype(np.float32)
        # 转换数组类型
        best_image_add_mean = (best_image_add_mean * 255).astype(np.uint8)
        # 调整数组形状
        best_image_add_mean = np.transpose(best_image_add_mean, (2, 0, 1))
        # 创建PIL图像对象
        pil_image = Image.fromarray(best_image_add_mean.transpose(1, 2, 0))
        # 保存图像
        pil_image.save(output_file)

修改方法:

1.对应地址位置要修改
2.将import  imageio改为import imageio.v2 as imageio
3.加入from PIL import Image
4.将两处的imageio.imwrite(output_file, best_image_add_mean)
修改为
if best_image_add_mean.shape != (1, 1, 437, 690, 3):
                # 如果形状不正确,则需要进行调整
                    best_image_add_mean = np.reshape(best_image_add_mean, (437, 690, 3))
                    # 检查调整后的形状
                    if best_image_add_mean.shape == (437, 690, 3):
                        # 如果调整后的形状正确,则继续处理
                        pass
                    else:
                        # 如果调整后的形状仍然不正确,则引发异常
                        raise ValueError("Array shape is not valid.")
                else:
                    # 如果形状正确,则不需要进行调整
                    best_image_add_mean = np.squeeze(best_image_add_mean)
                # 将数组转换为float32类型
                best_image_add_mean = best_image_add_mean.astype(np.float32)
                # 转换数组类型
                best_image_add_mean = (best_image_add_mean * 255).astype(np.uint8)
                # 调整数组形状
                best_image_add_mean = np.transpose(best_image_add_mean, (2, 0, 1))
                # 创建PIL图像对象
                pil_image = Image.fromarray(best_image_add_mean.transpose(1, 2, 0))
                # 保存图像
                pil_image.save(output_file)
运行在对应位置可以找到对应位置

 //漏斗标志表示程序正在运行 

运行结果展示:(由于运行次数较小,所以图片较为模糊) 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/531735.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CloudCompare二次开发之如何通过PCL进行点云采样?

文章目录 0.引言1.CloudCompare界面设计采样(sample)按钮2.RandomSample随机下采样3.VoxelGrid体素下采样4.UniformSampling均匀采样5. MovingLeastSquares增采样6.SamplingSurfaceNormal非均匀体素采样 0.引言 因笔者课题涉及点云处理,需要通过PCL进行点云数据一系…

MySQL之数据目录

前言 本文章收录在MySQL性能优化原理实战专栏,点击此处查看更多优质内容。 本文摘录自 ▪ 小孩子4919《MySQL是怎样运行的:从根儿上理解MySQL》 我们知道像InnoDB、MyISAM这样的存储引擎都是把表存储在磁盘上的,而操作系统用来管理磁盘的那…

C. Classy Numbers(dfs构造 + 组合数学)

Problem - C - Codeforces 让我们称某个正整数为“优美的”,如果它的十进制表示中不超过3个数字不为零。例如,数字4、200000、10203是优美的,而数字4231、102306、7277420000则不是。 给定一个区间[L;R],请计算在此区间内有多少个…

Linux awk流编辑器

awk流编辑器 工作原理 逐行读取文本,默认以空格或tab键为分隔符进行分隔,将分隔所得的各个字段保存到内建变量中,并按模式或者条件执行编辑命令。 sed命令常用于一整行的处理,而awk比较倾向于将一行分成多个“字段”然后再进行处理…

pix2pix

Image-to-Image Translation Using Conditional Adversarial Networks 1: pix2pix也是CGAN的一种,pix2pix可以学习输入到输出的映射,同时也学习了损害函数去训练这个映射。这是一个大一统的方法去实现从标签合成图像,从边界图重建…

【FMC139】多通道采集--基于 VITA57.1 标准的4 路500MSPS/1GSPS 14 位AD 采集子卡模块(AD9680/HMC7044)

板卡概述 FMC139 是一款基于VITA57.1 标准规范的JESD204B 接口FMC 子卡模块,该模块可以实现4 路14-bit、500MSPS/1GSPSADC采集功能。该板卡ADC 器件采用ADI 公司的AD9680 芯片,全功率-3dB 模拟输入带宽可达2GHz。该ADC 与FPGA 的主机接口通过8通道的高速串行GTX 收…

AutoSAR PNC和ComM

文章目录 PNC和ComMPNC管理NM PDU结构及PNC信息位置如何理解节点关联PNCPNC状态管理 ComM 通道状态管理 PNC和ComM PNC 和 ComM层的Channel不是一个概念,ComM的Channel对应具体的物理总线数。 在ComM模块中,一个Channel可以对应一个PNC,也可…

AIGC产业研究报告2023——语言生成篇

易观:今年以来,随着人工智能技术不断实现突破迭代,生成式AI的话题多次成为热门,而人工智能内容生成(AIGC)的产业发展、市场反应与相应监管要求也受到了广泛关注。为了更好地探寻其在各行业落地应用的可行性…

java字类与继承

文章目录 一、Java子类与父类二、Java子类的继承性三、Java子类与对象四、Java成员变量的隐藏和方法重写五、Java super关键字六、Java final关键字七、Java对象的上转型对象八、Java继承与多态九、Java abstract类和abstract方法总结 一、Java子类与父类 继承就是一种由已有的…

电脑无法安装软件?不用慌,这样做可以快速解决!

案例:为什么我的电脑不能下载软件? 【在学习的过程中,需要下载一些软件工具。按照老师给的软件步骤,电脑还是无法安装软件,有小伙伴知道怎么回事吗?】 在使用电脑的过程中,很多小伙伴都会遇到…

【C++】unordered_map和unordered_set的模拟实现

一、改造HashTable 实现了哈希表&#xff08;开散列&#xff09;&#xff0c;再将其封装为unordered_map和unordered_set。 HashTable的改造与RBTree的改造大致相同&#xff1a; 改造节点 template<class T> struct HashNode {//std::pair<K, V> _kv;//HashNod…

【AI思维空间】ChatGPT纵横编程世界,点亮智慧火花 | 京东云技术团队

作者&#xff1a;京东零售 王英杰 概述 该文档记录云交易开发小伙伴儿们在开发过程中的实际应用案例&#xff0c;记录典型案例&#xff0c;以解决开发过程中的实际问题为主&#xff0c;涵盖设计方案、编码、测试、集成、部署等等。 目的&#xff1a;贡献最佳实践&#xff0c;…

案例6:Java社区志愿者服务系统设计与实现开题报告

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

全面升级:知否AI问答场景导航功能震撼登场

今日&#xff0c;知否AI问答平台推出全新的场景功能&#xff0c;为用户提供更全面、高效的智能问答服务&#xff0c;再也不用担心找不到适合自己的场景入口了。 此次升级涵盖了50多个场景&#xff0c;包括论文助手、公司文案、营销文案、多语言翻译、行政公文、科研课题、招投…

bat脚本、dos命令

bat脚本 bat脚本就是DOS批处理脚本&#xff0c;就是将一系列DOS命令按照一定顺序排列而形成的集合&#xff0c;运行在windows命令行环境上。这个文件的每一行都是一条DOS命令 在命令提示下键入批处理文件的名称&#xff0c;或者双击该批处理文件&#xff0c;系统就会调用Cmd.…

服务器信息收集

#Version&#xff1a;1.2 #Modify Date&#xff1a;2013-05-21 #说明&#xff1a; #该脚本可以获取计算机名,域名,IP地址,操作系统版本,CPU名称单颗CPU内核数量*CPU个数,内存大小(GB),单块磁盘大小,计算机序列号,制造商,计算机型号 #该脚本先将计算机信息输出到txt文件中&…

浅谈Gradle构建工具

一、序言 常见的项目构建工具有Ant、Maven、Gradle&#xff0c;以往项目常见采用Maven进构建&#xff0c;但随着技术的发展&#xff0c;越来越多的项目采用Gradle进行构建&#xff0c;例如 Spring-boot。Gradle站在了Ant和Maven构建工具的肩膀上&#xff0c;使用强大的表达式语…

千万不要乱操作了!医院机房这么做真高级

各类中心数据机房广泛分布于银行、库房、交通、电信、医院、教育等行业。系统故障和人为操作不当可能导致各种业务中断或数据丢失&#xff0c;进而影响企业业务的停滞和运行。 医院管理3大难题和挑战 01.缺乏预警、告警机制 医院在使用自动化监控系统之前&#xff0c;主要靠人…

springboot足球赛事安排球队管理系统

系统主要有球队赛程安排&#xff0c;包括比赛数据&#xff0c;球员信息&#xff0c;球员实时数据&#xff0c;球队纪念品售卖 Spring Boot 是 Spring 家族中的一个全新的框架&#xff0c;它用来简化Spring应用程序的创建和开发过程。也可以说 Spring Boot 能简化我们之前采用SS…

09——path的使用

一、path 是 svg 中最强大的图形 用于定义一个 路径所有命令均允许小写字母。大写 表示绝对定位&#xff0c;小写 表示 相对定位 &#xff08;相对于上一个结束的坐标&#xff09;d 属性中包含所有路径的点&#xff0c;可根据命令缩写 自由组合 命令 名称 …