文章目录
- UNeXt: MLP-Based Rapid Medical Image Segmentation Network
- 摘要
- 本文方法
- Shifted MLP
- Tokenized MLP Stage
- 实验结果
UNeXt: MLP-Based Rapid Medical Image Segmentation Network
摘要
UNeXt:一种基于卷积多层感知器(MLP)的图像分割网络。
- 在早期的卷积阶段和潜在阶段的MLP阶段。我们提出了一个标记化的MLP块,其中我们有效地标记和投影卷积特征,并使用MLP对表征进行建模
- 向MLP反馈的同时改变输入的通道,以便专注于学习局部依赖性。
- 在潜在空间中使用标记化MLP减少了参数的数量和计算复杂性,同时能够产生更好的表示来帮助分割。该网络还包括各级编码器和解码器之间的跳过连接。我们在多个医学图像分割数据集上测试了UNeXt,结果表明,我们将参数数量减少了72x,假定复杂度减少了68x,推理速度提高了10倍,同时也获得了比现有技术的医学图像分割架构更好的分割性能。
- 代码地址
本文方法
Convolutional Stage:Conv---->BN---->RELU
Shifted MLP
在移位MLP中,我们首先在标记化之前移位conv特征的通道的轴。这有助于MLP仅关注conv特征的某些位置,从而诱导块的局部性。这里的直觉类似于Swin transformer,其中引入了基于窗口的注意力,为原本完全全局的模型添加更多的局部性。由于标记化MLP块有2个MLP,我们将特征在一个区块中跨宽度移动,在另一个区块跨高度移动,就像在轴向注意力中一样。我们将特征分割到h个不同的分区,并根据指定的轴将它们移动j=5个位置。这有助于我们创建沿轴引入局部性的随机窗口
Tokenized MLP Stage
在标记化的MLP块中,我们首先转换特征并将其投影到标记中。为了标记化,将通道的数量更改为E,其中E是嵌入维度(标记的数量),这是一个超参数。然后,我们将这些标记传递给移位的MLP(跨宽度),其中MLP的隐藏维度是超参数H。接下来,通过深度卷积层(DWConv)传递特征。我们在这个块中使用DWConv有两个原因:
- 它有助于对MLP特征的位置信息进行编码
- DWConv使用的参数数量较少,因此提高了效率
实验结果