玩转自动化操作神器n8n之(1)n8n的简介与安装

news2024/12/24 20:42:36

1. 简介

  • n8n是一款强大的工作流程自动化工具,可以自定义想要使用的功能和应用程序。n8n基于节点能够将任何工具连接在一起,轻松部署不同类型的任务。
  • n8n虽然在国内知名度没那么高,但是老外确实非常喜欢这个工具。我们简单搜索一下就可以发现
  • 知乎上基本上没有人讨论这个话题,就算仅有的几个回答也是好多年之前的,不知道的人还以为是一个小众软件呢

B站上面更是直接搜索不到

  • 但是当你打开它的GitHub页面,发现上面的star达到了30K,这是非常恐怖的一个数字

2. 安装

2.1. 使用npx进行安装

npx n8n

这个方法可能有坑就不做过多介绍了

2.2. 使用docker进行安装

  • 在docker中搜索n8nio/n8n
  • Docker
  • 使用下面的代码进行安装
  • docker pull n8nio/n8n

2.3. 设置端口(可选)

  • 默认的端口使用的是5678,但是如果和某些软件的端口有所冲突,可以对其进行修改

  • 修改完端口之后打开下面的网址,可以查看到n8n对应的工作页面
    默认的5678端口

  • 127.0.0.1:5678/
    修改后的端口

  • 127.0.0.1:7900/

http://127.0.0.1:7900/

3. 登录

  • 第一次打开的时候需要注册对应的账号,也可以先跳过去之后再登录

  • 我这里会避免后续功能被限制,所以直接注册了一个账号进行了登录

  • 之后再随便填一下,自己使用n8n的目的

  • 就可以最终进入到n8n的工作界面了
    如下所示,需要什么样的工作流就拖对应的模块进行组合即可

4. 搜索工作流

  • 在官网的工作流市场中,我们可以到找到大量现成的n8n工作流。当然了,这些主要是面向国外人的工作流的。在国内很多我们都用不了
  • n8n workflow templates

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/530817.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用插件快速生成代码

使用插件快速生成代码 咋们常说,授人以鱼不如授人以渔,在这里给大家提供一些技巧性的东西,方便一些新手同学可以快速上手,同时,也提高我们的开发兴趣与开发热情! 主要讲什么呢,我们来学一学如何…

低代码信创开发核心技术(二):手撕灵活好用的Vue拖拉拽布局系统

前言 随着信息化时代的到来,软件已经成为企业和个人不可或缺的工具。然而,许多人在开发软件时遇到了各种问题,比如开发周期长、技术门槛高、成本高昂等等。为了解决这些问题,低代码平台应运而生。低代码平台是一种快速开发工具&a…

Golang每日一练(leetDay0067) 第十行、打家劫舍I

目录 195. 第十行 Tenth Line 🌟 198. 打家劫舍 I House Robber 🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 195. 第十行 Tenth Line 给定一…

PySide6/PyQT多线程之 异常情况和优先级指南

前言 在PySide6/PyQT 中使用多线程时,线程的优先级和异常情况处理同样是重要的概念。 本文纯理论知识,无实操。换句话说,就是水文~~ 尽管在一般情况下我们不需要过多关注线程的优先级,但了解它的概念对于特定场景下的多线程编程仍…

Java每日一练(20230516) 最小栈、组合总和II、相同的树

目录 1. 最小栈 🌟 2. 组合总和 II 🌟🌟 3. 相同的树 🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 1. 最小栈 设计一个支持 push…

[入门必看]数据结构5.4:树、森林

[入门必看]数据结构5.4:树、森林 第五章 树与二叉树5.4 树、森林知识总览5.4.1 树的存储结构5.4.2 树、森林与二叉树的转化5.4.3 树和森林的遍历 5.4.1 树的存储结构树的逻辑结构回顾:二叉树的顺序存储如何实现树的顺序存储?树的存储1&#x…

【连续介质力学】张量的范数、各向同性和各向异性张量、同轴张量和极分解

张量的范数 张量的大小,使用Frobenius 范数: ∣ ∣ v ⃗ ∣ ∣ v ⃗ ⋅ v ⃗ v i v i (向量) ||\vec v|| \sqrt{\vec v \cdot \vec v} \sqrt{v_iv_i} (向量) ∣∣v ∣∣v ⋅v ​vi​vi​ ​&#xff…

okhttp篇2:Dispatcher

Dispatchers维护着一个线程池,3个双端队列,准备执行的AsynCall,正在执行的AsynCall,正在执行的同步Call(RealCall)。 同时规定每个Host最多同时请求5个Request,同时可最多执行64个Request。 p…

玩转Google开源C++单元测试框架Google Test系列(gtest)之一 - 初识gtest

一、前言 本篇将介绍一些gtest的基本使用,包括下载,安装,编译,建立我们第一个测试Demo工程,以及编写一个最简单的测试案例。 二、下载 如果不记得网址, 直接在google里搜gtest,第一个就是。目…

Docker下Gitlab配置Let’s Encrypt证书

Docker下Gitlab配置Let’s Encrypt证书 1 参考文档2 常见问题2.1 前置条件2.2 不支持ip2.3 重复签发2.4 外网无法访问 ※3 内网穿透配置(可选)4 Gitlab 创建并配置Let’s Encrypt证书4.1 开放Let’s Encrypt签发所需端口4.2 新增存储HTTPS证书文件夹4.3 …

多态与虚函数(补)

多态与虚函数(补) 静态联编与动态联编的深层次理解多态底层原理 示例示例一示例二示例三示例四 对象与内存虚析构函数构造函数为什么不能是虚函数? 静态联编与动态联编的深层次理解 我们首先看下面一段代码 class object { private: int va…

C learning_12 操作符前篇(算术操作符、移位操作符、位操作符、赋值操作符、单目操作符、关系操作符、逻辑操作符)

目录 算术操作符 移位操作符 移位规则 位操作符 交换两个整形变量的写法 赋值操作符 单目操作符 sizeof和数组的纠缠 和--运算符 多组输入的方案 关系操作符 逻辑操作符 算术操作符 -- 加法操作符():用于将两个值相加。 -- 减法操…

Python爬虫(二):Requests库

所谓爬虫就是模拟客户端发送网络请求,获取网络响应,并按照一定的规则解析获取的数据并保存的程序。要说 Python 的爬虫必然绕不过 Requests 库。 1 简介 对于 Requests 库,官方文档是这么说的: Requests 唯一的一个非转基因的 P…

存储知识点:RAID0、RAID1、RAID5、RAID10特点是什么?所需的硬盘数量分别为多少?

RAID(Redundant Array of Independent Disks)是一种将多个独立的硬盘组合成一个逻辑磁盘的技术,目的是提高性能或容错能力。RAID有不同的级别,常见的有RAID0、RAID1、RAID5、RAID10等。下面我们来介绍这些级别的特点和所需的硬盘数…

套接字编程简介

作者:V7 博客:https://www.jvmstack.cn 一碗鸡汤 少年辛苦终身事,莫向光阴惰寸功。 —— 杜荀鹤 Socket概述 在计算机中产生和接受IO流的数据源是多种多样的,在网络编程中,有一个特殊的数据源就是socket。通俗点soc…

linux的系统日志

目录 一、日志文件的产生 二、日志文件存放在哪儿 (1)文本日志 (2)二进制日志 三、日志存放规则的配置文件 四、日志轮转 五、分析和监控日志 一、日志文件的产生 日志内容:内核、开机引导、守护进程启动运行的…

华为和思科两种常见的网络设备如何进行ospf配置?

概述 ospf(开放最短路径优先)是一种基于链路状态的动态路由协议,它可以在网络中自动发现和维护最优的路由路径。ospf广泛应用于大型和复杂的网络环境,因为它具有以下优点: 支持分层路由,可以将网络划分为…

WebAssembly黑暗的一面

案例1:技术支持诈骗 什么是技术支持诈骗? 技术支持诈骗是一种电话欺诈,其中诈骗者声称可以提供合法的技术支持服务。该骗局可能以陌生电话开始,骗子通常会声称来自合法的第三方的员工,如“微软”或“Windows部门”。他…

YOLOv5实现目标分类计数并显示在图像上

有同学后台私信我,想用YOLOv5实现目标的分类计数,因此本文将在之前目标计数博客的基础上添加一些代码,实现分类计数。阅读本文前请先看那篇博客,链接如下: YOLOv5实现目标计数_Albert_yeager的博客 1. 分类实现 以co…

web 实验一 HTML基本标签实验

实验原理 通过创建HTML5网页,验证form内多种元素标签及其属性的作用及意义。 实验目的 理解并掌握Form表单提交必须声明的内容 理解并掌握Input元素中多种类型属性的使用方法及使用场景 理解并掌握Label元素的使用方法 理解并掌握Datalist元素的使用方法 理解并掌握…