使用RobustPCA 进行时间序列的异常检测

news2024/11/30 14:51:00

鲁棒主成分分析(Robust Principal Component Analysis, RobustPCA)是一种将时间序列矩阵分解为低秩分量和稀疏分量的技术。这种分解能够识别潜在的趋势,以及检测异常和异常值。在本中我们将研究RobustPCA的数学基础,介绍它与传统的PCA之间的区别,并提供可视化来更好地理解它在时间序列预测和异常检测中的应用。

RobustPCA 的数学基础

RobustPCA是经典主成分分析(PCA)的扩展,它可以通过捕获主成分来找到高维数据的低维表示。经典PCA对异常值敏感,在噪声存在时可能表现不佳。而RobustPCA通过将时间序列矩阵分解为两个组件来解决这个问题:捕获潜在趋势的低秩组件和解释异常值的稀疏组件。

在给定一个时间序列矩阵X, RobustPCA分解可表示为:

 X = L + S

这里的,L为低秩分量,S为稀疏分量。

RobustPCA解决了以下优化问题来寻找L和S:

这里的||L||*表示L的核范数(即其奇异值的和),||S||_1表示S的L1范数(即其元素的绝对值的和),λ是一个正则化参数,用于平衡低秩分量和稀疏分量之间的权衡。

RobustPCA 与传统PCA的区别

RobustPCA和传统的PCA(Principal Component Analysis)都是用于矩阵分解的技术,但它们在处理数据中包含噪声和异常值时的表现有所不同。

传统PCA是一种线性变换技术,用于将高维数据集投影到低维子空间中,以便更好地理解和分析数据。传统PCA假设数据中的每个观测值都服从高斯分布,这意味着在存在异常值或噪声的情况下,传统PCA的性能会受到影响。

而RobustPCA在数据包含噪声和异常值时表现更好,因为它能够将数据分解为低秩和稀疏成分。这使得RobustPCA在许多应用中比传统PCA更具有实用价值。例如,RobustPCA可以用于在图像和视频中检测和移除噪声和异常值,而传统PCA则可能会将噪声和异常值错误地归因于数据的基本结构。

另一个区别是,传统PCA是一个凸优化问题,可以通过求解特征值分解来直接求解,而RobustPCA是一个非凸优化问题,需要使用迭代算法(例如交替方向乘子法ADMM)来求解。此外传统PCA通常对数据进行中心化处理,而RobustPCA可以处理未中心化的数据。

RobustPCA使用示例

在Python中,robust_pca包提供了一个易于使用的基于ADMM算法的RobustPCA实现。

下面是一个使用robust_pca包来分解时间序列矩阵X的例子:

 import numpy as np
 from robust_pca import RobustPCA
 
 # Create a sample time series matrix X
 np.random.seed(42)
 X = np.random.randn(100, 10)
 
 # Perform RobustPCA decomposition
 rpca = RobustPCA(lam=0.1)
 L, S = rpca.fit_transform(X)

为了更好地理解RobustPCA分解,我们可以可视化原始时间序列矩阵X、低秩分量L和稀疏分量s。这种可视化可以帮助我们评估RobustPCA在从异常值和噪声中分离潜在趋势方面的有效性。

在上面的例子中,我们可以看到低秩分量L捕获了平滑趋势,而稀疏分量S隔离了异常值和噪声。

RobustPCA的应用

鲁棒主成分分析可以应用于广泛的时间序列预测和异常检测任务,包括:

金融市场分析:RobustPCA可用于分析高维金融时间序列数据,如股票价格、交易量和经济指标。通过将数据分解为低秩和稀疏的组件,我们可以识别趋势和异常,为投资决策和风险管理策略提供信息。

能源需求预测:RobustPCA可以通过捕捉数据中的潜在趋势和季节性来帮助预测能源需求,同时考虑极端天气事件或设备故障造成的异常值。

传感器数据分析:在工业应用中,RobustPCA可用于分析传感器数据,检测可能表明设备故障或其他问题的异常情况。

总结

鲁棒主成分分析(Robust Principal Component Analysis, RobustPCA)是一种将时间序列矩阵分解为低秩分量和稀疏分量的强大技术。这种分解允许在存在噪声和异常值的情况下进行更准确的趋势估计和异常检测,在科学和工程的各个领域中具有许多实际应用。

https://avoid.overfit.cn/post/0a8c32f16a284ceba20dee9cdf858ecb

作者:Naveen Kaushik

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/523244.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

GcDataViewer for JavaScript 6.1.0 Crack

GcDataViewer是跨平台 JavaScript 数据查看器,使用我们的 JavaScript 数据查看器在 Web 上打开和查看数据文档。 Load Excel (XLSX)、CSV 和SPREADJS(SSJSON) 文件,全部在一个查看器中 支持使用排序、筛选器和切片器进…

单词拼写检查textblob模块spellcheck方法

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 单词拼写检查 textblob模块 spellcheck方法 [太阳]选择题 关于python代码说法错误的一项是: from textblob import Word myWordsuccessfulee print("【显示】myWord …

【Spring事务】Spring事务事件控制,解决业务异步操作

使用背景 在业务中,经常会有这样的需求,在数据库事务提交之后,发送异步消息或者进行其他的事务操作。 例如当用户注册成功之后,发送激活码,如果用户注册后就执行发送激活码,但是在用户保存时出现提交事务…

【利用AI让知识体系化】入门Express框架

思维导图 文章目录 思维导图第一章:介绍Express什么是ExpressExpress优点Express应用场景 第二章:安装和基础用法安装Express搭建第一个Express应用中间件的使用 第三章:路由和控制器路由的原理路由的基本用法路由的进阶用法控制器的使用 第四…

BM 34 判断是否是二叉搜索树

判断是不是二叉搜索树_牛客题霸_牛客网 (nowcoder.com) 二叉搜索树满足每个节点的左子树上的所有节点均小于当前节点且右子树上的所有节点均大于当前节点。 递归去做 ,一段一段的去判断是否满足条件 /*** struct TreeNode {* int val;* struct TreeNode *left;* str…

c++ 11标准模板(STL) std::set(二)

定义于头文件 <set> template< class Key, class Compare std::less<Key>, class Allocator std::allocator<Key> > class set;(1)namespace pmr { template <class Key, class Compare std::less<Key>> using se…

超实用!50+个ChatGPT提示词助你成为高效Web开发者(上)

如果你已经感到编写代码的重复和繁琐让你疲惫不堪&#xff0c;想要提高自己的效率&#xff0c;那么你来对地方了。ChatGPT是一款能够帮助你优化工作流程、减少错误并获得提高代码的见解的强大工具。 在这篇博客文章中&#xff0c;我们将向你提供超过50个提示和策略&#xff0c;…

OpenCV教程——形态学操作。膨胀,腐蚀,开操作,闭操作,形态学梯度,顶帽,黑帽

1.形态学操作 图像形态学操作&#xff1a;基于形状的一系列图像处理操作的合集&#xff0c;主要是基于集合论基础上的形态学数学。 形态学有四个基本操作&#xff1a;膨胀、腐蚀、开、闭。 2.膨胀与腐蚀 2.1.膨胀 跟卷积操作类似&#xff0c;假设有图像A和结构元素B&#…

路径规划算法:基于灰狼优化的路径规划算法- 附代码

路径规划算法&#xff1a;基于灰狼优化的路径规划算法- 附代码 文章目录 路径规划算法&#xff1a;基于灰狼优化的路径规划算法- 附代码1.算法原理1.1 环境设定1.2 约束条件1.3 适应度函数 2.算法结果3.MATLAB代码4.参考文献 摘要&#xff1a;本文主要介绍利用智能优化算法灰狼…

自媒体的孔雀效应:插根鸡毛还是专业才华?

自媒体时代&#xff0c;让许多原本默默无闻的人找到了表达自己的平台。有人声称&#xff0c;现在这个时代&#xff0c;“随便什么人身上插根鸡毛就可以当孔雀了”。可是&#xff0c;事实真的如此吗&#xff1f; 首先&#xff0c;我们不能否认的是&#xff0c;自媒体确实为大众提…

【大数据】通过 docker-compose 快速部署 Presto(Trino)保姆级教程

文章目录 一、概述二、前期准备1&#xff09;部署 docker2&#xff09;部署 docker-compose 三、创建网络四、Trino 编排部署1&#xff09;下载 trino2&#xff09;配置1、coordinator 配置2、worker 配置 3&#xff09;启动脚本 bootstrap.sh4&#xff09;构建镜像 Dockerfile…

多尺度深度特征(下):多尺度特征学习才是目标检测精髓(论文免费下载)...

计算机视觉研究院专栏 作者&#xff1a;Edison_G 深度特征学习方案将重点从具有细节的具体特征转移到具有语义信息的抽象特征。它通过构建多尺度深度特征学习网络 (MDFN) 不仅考虑单个对象和局部上下文&#xff0c;还考虑它们之间的关系。 公众号ID&#xff5c;ComputerVisionG…

MySQL- 存储引擎

MySQL体系结构 连接层 最上层是一些客户端和链接服务&#xff0c;包含本地sock 通信和大多数基于客户端/服务端工具实现的类似于 TCP/IP的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程 池的概念&#xff0c;为通过认证安全接入的客户端…

通过自动装箱和拆箱解释所定义基础数据类型和其对应封装类的区别

文章目录 前言一、拆装箱的实质二、拓展1.数值超过128的Integer装箱2.Java内存分配 前言 在刷软中的时候涉及到了值传递和地址传递传参的区别&#xff0c;其中提到不管是将基础数据类型的变量传值给对象数据类型的变量还是反过来都属于值传递&#xff0c;究其原因就是期间发生了…

【本地模式】第一个Mapreduce程序-wordcount

【本地模式】&#xff1a;也就是在windows环境下通过hadoop-client相关jar包进行开发的&#xff0c;我们只需要通过本地自己写好MapReduce程序即可在本地运行。 一个Maprduce程序主要包括三部分&#xff1a;Mapper类、Reducer类、执行类。 map阶段&#xff1a;将每一行单词提…

XShell远程连接

xshell 是一个强大的安全终端模拟软件&#xff0c;它支持SSH1,SSH2以及microsoft windows 平台的TELNET协议。xshell通过互联网到远程主机的安全连接。 xshell可以在windows界面下来访问远程终端不同系统下的服务器&#xff0c;从而比较好的达到远程控制终端的目的。 步骤一 …

MySQL- 索引

索引是帮助MySQL高效获取数据的数据结构(有序)。在数据之外, 数据库系统还维护着满足特定查找算法的数据结构, 这些数据结构以某种方式引用数据, 这样就可以在这些数据结构上实现高级查找算法, 这种数据结构就是索引。 索引结构 MySQL的索引是在存储层实现的, 不同的存储引擎有…

网友总结:面试超过一个小时,通过概率更低;面试时长在半小时以内,通过概率更高!...

面试时长跟通过概率有关系吗&#xff1f; 一位网友分享了自己的求职感想&#xff1a; 面试过程越长&#xff0c;差不多一个小时或者超过一个小时&#xff0c;问得越详细&#xff0c;通过的可能性越低。因为问得越细&#xff0c;说明这个公司越挑&#xff0c;需要候选人匹配度越…

【C++ 入坑指南】(05)数据类型

文章目录 一、整型sizeof 关键字 二、实型&#xff08;浮点型&#xff09;三、字符型四、字符串型4.1 C 风格字符串4.2 C 引入的 string 类类型 五、布尔类型&#xff08;bool&#xff09;六、类型转换6.1 静态转换&#xff08;Static Cast&#xff09;6.2 动态转换&#xff08…

软考A计划-真题-分类精讲汇总-第六章(软件工程)

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例 &#x1f449;关于作者 专注于Android/Unity和各种游戏开发技巧&#xff0c;以及各种资源分享&am…