文章目录
- 题目1: App 使用频率分析
- 题目2: App 下载情况统计
- 题目3: 寻找活跃学习者
- 题目4: 商品分类整理
- 题目5: 商品销售分析
- 题目6: 网约车司机收益统计
- 题目7: 网站登录时间间隔统计
- 题目8: 不同区域商品收入统计
- 题目9: 信贷逾期情况统计
题目1: App 使用频率分析
现有一张用户使用 App 时间表 middle_app_login,middle_app_login 表的数据如下表所示:
mysql> SELECT * FROM middle_app_login;
-- user_id(用户ID):VARCHAR start_time(登录App时间):DATETIME end_time(退出App时间):DATETIME
+---------+---------------------+---------------------+
| user_id | start_time | end_time |
+---------+---------------------+---------------------+
| u001 | 2021-04-01 10:12:30 | 2021-04-01 11:13:21 |
| u002 | 2021-04-02 08:40:21 | 2021-04-02 10:13:41 |
| u003 | 2021-04-02 15:31:01 | 2021-04-02 15:54:42 |
| u001 | 2021-04-04 13:25:40 | 2021-04-04 17:52:46 |
| u003 | 2021-04-06 07:10:20 | 2021-04-06 08:03:15 |
| u001 | 2021-04-09 18:20:34 | 2021-04-09 18:23:58 |
| u001 | 2021-04-10 14:25:55 | 2021-04-10 15:01:25 |
+---------+---------------------+---------------------+
7 rows in set (0.00 sec)
【题目1】根据该表统计出每个用户每次退出App与下一次登录App间隔的平均时间,如果用户只登录过一次App,则不统计,要求输出的平均时间的单位为分钟,并将其四舍五入保留一位小数。输出内容包括:user_id(用户ID)、avg_minute(平均间隔时间),结果样例如下图所示:
【题目1解析】本题使用LEAD()函数对每个用户登录App的时间进行分组排序,生成新的一列,以构造出上一次退出App的时间与下一次登录App的时间在同一行的表格结构,方便之后进行处理。然后筛选出为非空的行,使用TIMESTAMPDIFF()函数计算start_time_lead与end_time的分钟差,再求平均值,并将其四舍五入保留一位小数即可得到结果。涉及知识点:子查询、日期/时间处理函数、窗口函数、空值处理、小数保留、分组聚合。参考代码如下:
mysql> -- ① 按照解析的写法
mysql> SELECT user_id
-> , ROUND(AVG(TIMESTAMPDIFF(MINUTE, end_time, start_time_lead)), 1) AS avg_minute
-> FROM (SELECT user_id
-> , start_time
-> , end_time
-> , LEAD(start_time, 1) OVER (PARTITION BY user_id ORDER BY start_time) AS start_time_lead
-> FROM middle_app_login) a
-> WHERE start_time_lead IS NOT NULL
-> GROUP BY user_id;
+---------+------------+
| user_id | avg_minute |
+---------+------------+
| u001 | 4293.3 |
| u003 | 5235.0 |
+---------+------------+
2 rows in set (0.00 sec)
mysql> -- ② 第二种写法
mysql> SELECT user_id, ROUND(AVG(end_time_lag), 1) AS avg_minute
-> FROM (SELECT a1.user_id,
-> TIMESTAMPDIFF(MINUTE, LAG(end_time, 1) OVER (PARTITION BY a1.user_id ORDER BY start_time), a1.start_time
-> ) AS end_time_lag
-> FROM middle_app_login a1
-> INNER JOIN (SELECT user_id FROM middle_app_login GROUP BY user_id HAVING COUNT(*) > 1) a2
-> ON a1.user_id = a2.user_id) a
-> WHERE a.end_time_lag IS NOT NULL
-> GROUP BY user_id;
+---------+------------+
| user_id | avg_minute |
+---------+------------+
| u001 | 4293.3 |
| u003 | 5235.0 |
+---------+------------+
2 rows in set (0.00 sec)
题目2: App 下载情况统计
现有一张 App 累计下载情况表 middle_app_download,该表记录了应用商品中 App 累计下载次数的信息,middle_app_download 表的数据如下所示:
mysql> SELECT * FROM middle_app_download;
-- app_id(AppID):VARCHAR app_type(App类型):VARCHAR download(下载次数):INT
+--------+----------+----------+
| app_id | app_type | download |
+--------+----------+----------+
| a001 | A | 12432 |
| a002 | B | 9853 |
| a003 | A | 1924 |
| a004 | C | 2679 |
| a005 | C | 29104 |
| a006 | A | 10235 |
| a007 | B | 5704 |
| a008 | B | 2850 |
| a009 | B | 8235 |
| a010 | C | 9746 |
+--------+----------+----------+
10 rows in set (0.00 sec)
【题目2】查询不同类型App的平均下载次数,需要将下载次数排在前10%与后10%的App排除在外。输出内容包括:app_type(App类型)、avg_download(平均下载次数),结果样例如下图所示:
【题目2解析】使用RANK()函数生成新的一列作为下载量排名(ranking),将该部分作为子查询内部,并在子查询外部通过WHERE筛选出符合要求的记录,分组统计平均下载次数即可。涉及知识点:子查询、窗口函数、空值处理、分组聚合。参考代码如下:
mysql> SELECT a.app_type, AVG(a.download) as avg_download
-> FROM (SELECT app_id, app_type, download, RANK() OVER (ORDER BY download DESC ) AS download_rank
-> FROM middle_app_download) a
-> WHERE a.download_rank > (SELECT COUNT(*) FROM middle_app_download) * 0.1
-> AND a.download_rank < (SELECT COUNT(*) FROM middle_app_download) * 0.9
-> GROUP BY a.app_type;
题目3: 寻找活跃学习者
现有一张用户学习打卡表 middle_active_learning,middle_active_learning 表中数据如下所示:
mysql> SELECT * FROM middle_active_learning;
-- user_id(用户ID):VARCHAR study_date(打卡日期):DATE
+---------+------------+
| user_id | study_date |
+---------+------------+
| u001 | 2021-04-01 |
| u002 | 2021-04-01 |
| u003 | 2021-04-03 |
| u001 | 2021-04-06 |
| u003 | 2021-04-07 |
| u001 | 2021-04-12 |
| u001 | 2021-04-13 |
| u002 | 2021-04-14 |
| u001 | 2021-04-23 |
| u002 | 2021-04-24 |
| u001 | 2021-04-26 |
| u003 | 2021-04-27 |
| u002 | 2021-04-30 |
+---------+------------+
13 rows in set (0.00 sec)
【题目3】根据该表统计2021年4月中每周都学习打卡的用户。输出内容包括: user_id(用户ID),结果样例如下图所示:
【题目3解析】使用WEEKOFYEAR函数获取周数,限制study_date为2021年4月,由于用户可能一周内打卡多次,因此使用DISTINCT进行去重,为之后的统计操作做铺垫,通过GROUP BY对用户进行分组,统计出打卡周的数量等于5的用户(2021年4月跨越5周),即可得到每周打卡的用户。涉及知识点:子查询、DISTINCT、日期/时间处理函数。参考代码如下:
mysql> SELECT a.user_id
-> FROM (SELECT DISTINCT user_id
-> , WEEKOFYEAR(study_date) AS study_week
-> FROM middle_active_learning
-> WHERE study_date >= '2021-04-01'
-> AND study_date <= '2021-04-30') a
-> GROUP BY a.user_id
-> HAVING COUNT(a.study_week) = 5;
题目4: 商品分类整理
现有一张商品分类表 middle_commodity_classification,middle_commodity_classification 表的数据如下表所示:
mysql> SELECT * FROM middle_commodity_classification;
-- current_category(商品当前分类):VARCHAR parent_category(商品父类别):VARCHAR
+------------------+-----------------+
| current_category | parent_category |
+------------------+-----------------+
| 刀 | 厨具 |
| 厨具 | 生活用品 |
| 碗 | 餐具 |
| 水果刀 | 刀 |
| 剔骨刀 | 刀 |
| 餐具 | 生活用品 |
| 汤碗 | 碗 |
+------------------+-----------------+
7 rows in set (0.00 sec)
【题目4】查询得到下图所示的结果样例。输出内容包括:三级类目、二级类目、一级类目、根类目,结果样例如下图所示:
【题目4解析】本题是分类关系的整理,显示的结果样例中有4层类别关系,需要通过3次表的自连接来实现。涉及知识点:自连接。参考代码如下:
mysql> SELECT m1.current_category AS '三级类目',
-> m1.parent_category AS '二级类目',
-> m2.parent_category AS '一级类目',
-> m3.parent_category AS '根目录'
-> FROM middle_commodity_classification m1,
-> middle_commodity_classification m2,
-> middle_commodity_classification m3
-> WHERE m1.parent_category = m2.current_category
-> AND m2.parent_category = m3.current_category;
题目5: 商品销售分析
现有一张商品信息表 middle_commodity_info,该表记录了商品的基础信息,middle_commodity_info 数据如下所示:
mysql> SELECT * FROM middle_commodity_info;
-- sku_id(商品SKU):VARCHAR commodity_category(商品类别):VARCHAR director(商品销售负责人):VARCHAR
+--------+--------------------+----------+
| sku_id | commodity_category | director |
+--------+--------------------+----------+
| u001 | c001 | a001 |
| u003 | c002 | a001 |
| u002 | c003 | a002 |
+--------+--------------------+----------+
3 rows in set (0.00 sec)
还有一张商品销售金额表 middle_commodity_sale,该表记录了每天商品的销售情况,middle_commodity_sale 数据如下所示:
mysql> SELECT * FROM middle_commodity_sale;
-- date(日期):DATE sku_id(商品SKU):VARCHAR sales(商品销售金额):INT
+------------+--------+-------+
| date | sku_id | sales |
+------------+--------+-------+
| 2020-12-20 | u001 | 12000 |
| 2020-12-20 | u002 | 8000 |
| 2020-12-20 | u003 | 11000 |
| 2020-12-21 | u001 | 20000 |
| 2020-12-21 | u003 | 16000 |
| 2020-12-22 | u003 | 11000 |
| 2020-12-22 | u001 | 34000 |
| 2020-12-22 | u002 | 11000 |
| 2020-12-23 | u003 | 18000 |
| 2020-12-23 | u001 | 30000 |
+------------+--------+-------+
10 rows in set (0.00 sec)
【题目5】查询商品销售负责人为a001在2020年每个商品类别销量最高的两天的信息,输出内容包括:commodity_category(商品分类)、date(日期)、total_sales(销量),结果样例如下图所示:
【题目5】参考代码如下:
mysql> SELECT commodity_category
-> , `date`
-> , total_sales
-> FROM (
-> SELECT commodity_category
-> , `date`
-> , RANK() OVER (PARTITION BY commodity_category ORDER BY total_sales DESC) AS ranking
-> , total_sales
-> FROM (
-> SELECT b.commodity_category
-> , a.`date`
-> , SUM(a.sales) AS total_sales
-> FROM middle_commodity_sale a
-> JOIN middle_commodity_info b
-> ON a.sku_id = b.sku_id
-> WHERE b.director = 'a001'
-> AND YEAR(a.`date`) = 2020
-> GROUP BY b.commodity_category
-> , a.`date`
-> ) c
-> ) d
-> WHERE ranking <= 2;
题目6: 网约车司机收益统计
现有一张网约车订单表 middle_car_order,该表记录了某天的网约车订单相关信息,middle_car_order 数据如下表所示:
mysql> SELECT * FROM middle_car_order;
-- order_id(订单ID):VARCHAR driver_id(司机ID):VARCHAR order_amount(订单金额):DOUBLE
+----------+-----------+--------------+
| order_id | driver_id | order_amount |
+----------+-----------+--------------+
| o001 | d001 | 15.6 |
| o002 | d002 | 36.5 |
| o003 | d001 | 30.1 |
| o004 | d002 | 10.6 |
| o005 | d001 | 26.2 |
| o006 | d001 | 14.6 |
| o007 | d003 | 28.9 |
| o008 | d001 | 8.8 |
| o009 | d002 | 13.3 |
| o010 | d001 | 29.4 |
+----------+-----------+--------------+
10 rows in set (0.00 sec)
【题目6】司机的收入为订单金额的80%(表中订单金额的单位为元),如果司机当天的订单数量>=5且总订单金额>=100,则能收到额外补贴10元。请统计当天各司机的收入,并将结果按照收入降序排列且四舍五入保留两位小数。输出内容包括:driver_id(司机ID)、total_order(总订单量)、total_income(总收入),结果样例如下图所示:
【题目6】参考代码如下:
mysql> SELECT a.driver_id,
-> a.total_order,
-> CASE
-> WHEN total_order >= 5 AND total_amount >= 100 THEN ROUND(total_amount * 0.8 + 10, 2)
-> ELSE ROUND(total_amount * 0.8, 2) END AS 'total_income'
-> FROM (SELECT driver_id, COUNT(driver_id) AS 'total_order', SUM(order_amount) AS 'total_amount'
-> FROM middle_car_order
-> GROUP BY driver_id) a ORDER BY total_income DESC;
题目7: 网站登录时间间隔统计
现有一张网站登录情况表 middle_login_info,该表记录了所有用户的网站登录信息,middle_login_info 表的数据如下所示:
mysql> SELECT * FROM middle_login_info;
-- user_id(用户ID):VARCHAR login_time(用户登录日期):DATE
+---------+------------+
| user_id | login_time |
+---------+------------+
| a001 | 2021-01-01 |
| b001 | 2021-01-01 |
| a001 | 2021-01-03 |
| a001 | 2021-01-06 |
| a001 | 2021-01-07 |
| b001 | 2021-01-07 |
| a001 | 2021-01-08 |
| a001 | 2021-01-09 |
| b001 | 2021-01-09 |
| b001 | 2021-01-10 |
| b001 | 2021-01-15 |
| a001 | 2021-01-16 |
| a001 | 2021-01-18 |
| a001 | 2021-01-19 |
| b001 | 2021-01-20 |
| a001 | 2021-01-23 |
+---------+------------+
16 rows in set (0.00 sec)
【题目7】计算每个用户登录日期间隔小于5天的次数。输出内容包括:user_id(用户ID)、num(用户登录日期间隔小于5天的次数),结果样例如下图所示:
【题目7】参考代码如下:
mysql> SELECT a.user_id, COUNT(*) AS 'num'
-> FROM (SELECT user_id,
-> login_time,
-> TIMESTAMPDIFF(DAY, LAG(login_time) OVER (PARTITION BY user_id ORDER BY login_time),
-> login_time) AS date_diff
-> FROM middle_login_info) a
-> WHERE a.date_diff < 5
-> GROUP BY a.user_id;
题目8: 不同区域商品收入统计
现有一张不同城市的商品收入情况表 middle_sale_volume,该表记录了年份和区域等信息,middle_sale_volume 数据如下表所示:
mysql> SELECT * FROM middle_sale_volume;
-- year(年份):YEAR region(区域):VARCHAR city(城市):VARCHAR money(收入):INT
+------+--------+------+-------+
| year | region | city | money |
+------+--------+------+-------+
| 2018 | 东区 | A 市 | 1125 |
| 2019 | 东区 | A 市 | 1305 |
| 2020 | 东区 | A 市 | 1623 |
| 2018 | 东区 | C 市 | 845 |
| 2019 | 东区 | C 市 | 986 |
| 2020 | 东区 | C 市 | 1134 |
| 2018 | 西区 | M 市 | 638 |
| 2019 | 西区 | M 市 | 1490 |
| 2020 | 西区 | M 市 | 1120 |
| 2018 | 西区 | V 市 | 1402 |
| 2019 | 西区 | V 市 | 1209 |
| 2020 | 西区 | V 市 | 1190 |
+------+--------+------+-------+
12 rows in set (0.00 sec)
【题目8】统计每个区域的总收入和平均收入,并将结果四舍五入保留一位小数。输出内容包括:year(年份)、不同区域的总收入和平均收入,结果样例如下图所示:
【题目8】参考代码如下:
-- 第①种写法
mysql> SELECT a.`year`
-> , ROUND(SUM(IF(a.region = '东区', a.money, 0)), 1)
-> AS '东区总收入'
-> , ROUND(SUM(IF(a.region = '西区', a.money, 0)), 1)
-> AS '西区总收入'
-> , ROUND(SUM(IF(a.region = '东区', a.money, 0)) / SUM(a.east_area), 1)
-> AS '东区平均收入'
-> , ROUND(SUM(IF(a.region = '西区', a.money, 0)) / SUM(a.west_area), 1)
-> AS '西区平均收入'
-> FROM (
-> SELECT `year`
-> , region
-> , money
-> , IF(region = '东区', 1, 0) AS east_area
-> , IF(region = '西区', 1, 0) AS west_area
-> FROM sale_volume
-> GROUP BY `year`
-> , region
-> , money
-> ) AS a
-> GROUP BY a.`year`;
-- 第②种写法
mysql> SELECT a.year,
-> ROUND(a.收入, 1) AS '东区总收入',
-> ROUND(b.收入, 1) AS '西区总收入',
-> ROUND(a.平均收入, 1) AS '东区平均收入',
-> ROUND(b.平均收入, 1) AS '西区平均收入'
-> FROM (SELECT year,
-> region,
-> SUM(money) AS '收入',
-> AVG(money) AS '平均收入'
-> FROM middle_sale_volume
-> GROUP BY year, region) a
-> INNER JOIN (SELECT year,
-> region,
-> SUM(money) AS '收入',
-> AVG(money) '平均收入'
-> FROM middle_sale_volume
-> GROUP BY year, region) b ON a.region < b.region AND a.year = b.year;
题目9: 信贷逾期情况统计
现有一张用户贷款情况表 middle_credit_overdue,middle_credit_overdue 表中的数据如下所示:
mysql> SELECT * FROM middle_credit_overdue;
-- user_id(用户ID):VARCHAR overdue_date(贷款逾期日期):DATE
+---------+--------------+
| user_id | overdue_date |
+---------+--------------+
| u001 | 2020-10-20 |
| u002 | 2020-11-03 |
| u003 | 2020-10-04 |
| u004 | 2021-01-05 |
| u005 | 2021-01-15 |
| u006 | 2020-09-04 |
| u007 | 2021-01-03 |
| u008 | 2020-12-24 |
| u009 | 2020-12-10 |
+---------+--------------+
9 rows in set (0.00 sec)
【题目9】统计日期截至2021年1月20日,不同逾期月份的逾期1-29天,逾期30-59天和逾期60天以上的样本个数。输出内容包括:overdue_month(逾期月份)、逾期1~29天,逾期30~59天,逾期60天以上,结果样例如下图所示:
【题目9】参考代码如下:
-- 第①种写法参考:
mysql> SELECT LEFT(overdue_date, 7),
-> SUM(CASE
-> WHEN TIMESTAMPDIFF(DAY, overdue_date, '2021-01-20') BETWEEN 1 AND 29 THEN 1
-> ELSE 0 END) AS '逾期1-29天',
-> SUM(CASE
-> WHEN TIMESTAMPDIFF(DAY, overdue_date, '2021-01-20') BETWEEN 30 AND 59 THEN 1
-> ELSE 0 END) AS '逾期30-59天',
-> SUM(CASE
-> WHEN TIMESTAMPDIFF(DAY, overdue_date, '2021-01-20') > 60 THEN 1
-> ELSE 0 END) AS '逾期60天以上'
-> FROM middle_credit_overdue
-> GROUP BY LEFT(overdue_date, 7)
-> ORDER BY LEFT(overdue_date, 7)
-> DESC;
-- 第②种写法参考:
mysql> SELECT overdue_month
-> , COUNT(CASE
-> WHEN overdue_days >= 1 AND overdue_days < 30
-> THEN user_id END)
-> AS '逾期 1-29 天'
-> , COUNT(CASE
-> WHEN overdue_days >= 30 AND overdue_days < 60
-> THEN user_id END)
-> AS '逾期 30-59 天'
-> , COUNT(CASE
-> WHEN overdue_days >= 60
-> THEN user_id END)
-> AS '逾期 60 天以上'
-> FROM (
-> SELECT user_id
-> , DATE_FORMAT(overdue_date, '%Y-%m') AS overdue_month
-> , DATEDIFF('2021-01-20', overdue_date)
-> AS overdue_days
-> FROM middle_credit_overdue
-> ) a
-> GROUP BY overdue_month
-> ORDER BY overdue_month DESC;
至此今天的学习就到此结束了,笔者在这里声明,笔者写文章只是为了学习交流,以及让更多学习数据库的读者少走一些弯路,节省时间,并不用做其他用途,如有侵权,联系博主删除即可。感谢您阅读本篇博文,希望本文能成为您编程路上的领航者。祝您阅读愉快!
好书不厌读百回,熟读课思子自知。而我想要成为全场最靓的仔,就必须坚持通过学习来获取更多知识,用知识改变命运,用博客见证成长,用行动证明我在努力。
如果我的博客对你有帮助、如果你喜欢我的博客内容,请点赞
、评论
、收藏
一键三连哦!听说点赞的人运气不会太差,每一天都会元气满满呦!如果实在要白嫖的话,那祝你开心每一天,欢迎常来我博客看看。
编码不易,大家的支持就是我坚持下去的动力。点赞后不要忘了关注
我哦!