Flink的三种时间
在谈watermark之前,首先需要了解flink的三种时间概念。在flink中,有三种时间戳概念:Event Time 、Processing Time 和 Ingestion Time。其中watermark只对Event Time类型的时间戳有用。这三种时间概念分别表示:
Processing time
处理时间,指执行算子操作的机器的当前时间。当基于处理时间运行时,所有关于时间的操作(如时间窗口)都将使用执行算子操作的主机的本地时间。例如,当时间窗口为一小时,如果应用程序在9:15 am开始运行,则第一个窗口将包括在9:15 am到10:00 am之间被处理的事件,下一个窗口将包含在10:00 am到11:00 am之间被处理的事件,依此类推。
处理时间是最简单的时间概念,不需要流和机器之间的协调。它提供了最佳的性能和最低的延迟。但是,在分布式和异步环境中,处理时间不能提供确定性,因为它容易受到上流系统(例如从消息队列)到达Flink的速度、flink内部operators之间交互的速度,以及中断(调度或其他情况)等因素的影响。
Event Time
事件时间,是每个event在其生产设备上产生的时间,即元素在到达flink之前,本身就自带的时间戳。
所以说,Event Time的时间戳取决于数据,而与其他时间无关。使用Event Time,必须在从执行环境中先引入EventTime的时间属性。如:
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给env创建的每一个stream追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
然后通过Dstream的assignTimestampsAndWatermarks方法指定event time时间戳,具体操作不做赘述。
在理想情况下,事件时间是有序的。但实际上,由于分布式操作,以及网络延迟等原因,event可能不是按照event time的顺序到达的。所以flink对处理乱序数据的方案是提供一个允许延迟时间,在允许延迟时间内到达的元素将会重新触发一次计算。这个延迟时间时相对event time而不是其他时间的,而event time不是由flink决定的,那么如何判断当前的event time到底时多少呢?flink通过一个watermark来确定与维护当前event time的最大值。这也是本文将会在后面重点解释的。
Ingestion time
Ingestion time是event进入Flink的时间,即执行source操作时的时间。
Ingestion time从概念上讲介于Event Time和Processing time之间。
与Processing time相比 ,它花费的资源会稍微多一些,但结果却更可预测。由于 Ingestion time使用稳定的时间戳(仅在addSource处分配了一次),因此对记录的不同窗口操作将引用相同的时间戳,而在Processing time中,每个窗口操作都会更新事件的Processing time,所以可能一个上游窗口中的记录会分配给不同的下游窗口(基于本地系统时钟和任何可能的延误)。
与Event Time相比,Ingestion time程序无法处理任何乱序事件或迟到的数据,但是程序不必指定如何生成watermarks。
下图为三种时间语义的图解:
watermark
用我自己的语言总结,在flink的窗口计算中,的watermark就是触发窗口计算的一种机制。
那么,watermark到底是以怎样的一种形式存在的呢?实际上,watermark就是一种特殊的event,它被参杂在Dstream中,watermark由flink的某个操作生成后,就在整个程序中随event一同流转,如下图所示:
以下是watermark的代码,可以看出watermark的就是一个流元素,仅包含一个时间戳属性:
public final class Watermark extends StreamElement {
/** The watermark that signifies end-of-event-time. */
public static final Watermark MAX_WATERMARK = new Watermark(Long.MAX_VALUE);
// ------------------------------------------------------------------------
/** The timestamp of the watermark in milliseconds. */
private final long timestamp;
/**
* Creates a new watermark with the given timestamp in milliseconds.
*/
public Watermark(long timestamp) {
this.timestamp = timestamp;
}
watermark的窗口触发机制
watermark会根据数据流中event的时间戳发生变化。通常情况下,event都是乱序的,不按时间排序的。watermark的计算逻辑为:当前最大的 event time - 最大允许延迟时间(MaxOutOfOrderness)。在同一个分区内部,当watermark大于或者等于窗口的结束时间时,才能触发该窗口的计算,即watermark>=windows endtime。如下图所示:
根据上图分析:
MaxOutOfOrderness = 5s,窗口的大小为:10s。
watermark分别为:12:08、12:15、12:30
计算逻辑为:WM(12:08)=12:13 - 5s;WM(12:15)=12:20 - 5s;WM(12:30)=12:35 - 5s
- 对于 [12:00,12:10) 窗口,需要在WM=12:15时,才能被触发计算,参与计算的event为:event(12:07)/event(12:01)/event(12:07)/event(12:09),event(12:10)/event(12:12)/event(12:12)/event(12:13)/event(12:20)/event(12:14)/event(12:15)不参与计算,因为还未到窗口时间,也就是event time 为 [12:00,12:10] 窗口内的event才能参与计算。
注意,如果过了这个窗口期,再收到 [12:00,12:10] 窗口内的event,就算超过了最大允许延迟时间(MaxOutOfOrderness),不会再参与计算,也就是数据被强制丢掉了。 - 对于 [12:10,12:20] 和 [12:20,12:30] 窗口,会在WM=12:30时,被同时触发计算,参与**[12:10,12:20]** 窗口计算的event为:event(12:10)/event(12:12)/event(12:12)/event(12:13)/event(12:14)/event(12:15)/event(12:15)/event(12:18);参与 [12:20,12:30] 窗口计算的event为:event(12:20)/event(12:20);在这个过程中event(12:05)会被丢弃,不会参与计算,因为已经超了最大允许延迟时间(MaxOutOfOrderness)
迟到的事件
在介绍watermark时,提到了现实中往往处理的是乱序event,即当event处于某些原因而延后到达时,往往会发生该event time < watermark的情况,所以flink对处理乱序event的watermark有一个允许延迟的机制,这个机制就是最大允许延迟时间(MaxOutOfOrderness),允许在一定时间内迟到的event仍然视为有效event。
并行流的Watermarks
watermark可以在source处生成(也可以在source后通过其他算子生成,如map、filter等),如果source有多个并行度,那么每个并行度会单独生成一个watermark,这些watermark定义了各分区的event time。
当并行度发生变化(即上游的一个分区可能被下游多个分区使用时),每个分区的watermark是会广播至下游的每个分区的,如一些聚合多个流的操作,如 keyBy(…) 或者partition(…),此类操作的watermark是在所有输入流中取最小的watermark。当带有watermark的流通过此类算子时,会根据每个分区的watermark来更新watermark。
举个例子:当上游并行度数为4,下游的某个分区的窗口中的watermark如下:
-
当已到达的watermark分别为2、4、3、6时,窗口中的watermark为2,触发watermark为2的对应窗口计算,并将watermark=2广播至下游。
-
当第一个窗口的watermark被更新为4时,所有分区中已到达最小的watermark是3,则将窗口的watermark更新为3,触发对应窗口的计算,并将watermark=3广播至下游。
-
当第二个分区的watermark被更新为7,所有分区中已到达最小的watermark还是3,不做处理。
-
当第三个分区的watermark被更新为6,所有分区中已到达最小的watermark是4,则将窗口的watermark更新为4,触发对应窗口的计算,并将watermark=4广播至下游。
下图显示了event和watermark在一个并行流的示例,以及算子如何跟踪事件时间的:
watermark分配器
当watermark完全基于event time时,如果没有元素到达,则watermark不会被更新,这就说明,当一段时间没有元素到达,则在这个时间间隙内,watermark不会增加,那么也不会触发窗口计算。显然,如果这段时间很长的话,那么该窗口中已经到达的元素将会等待很久才会被输出计算结果。
为了避免这种情况,可以使用周期性的watermark分配器(AssignerWithPeriodicWatermarks 下面马上提到),这些分配器不仅仅基于event time进行分配。比如,可以使用一个分配器,当一段时间没有接收到新的event时,则将当前时间作为watermark。
watermark的两种分配器,flink生成watermark有两种机制:
- AssignerWithPeriodicWatermarks :分配时间戳并定期生成watermark(可以取决于event time,或基于处理时间)。
- AssignerWithPunctuatedWatermarks:分配时间戳并根据每一个元素生成watermark(每来一个元素都进行一次判断,相更消耗性能)
通常情况下会使用第一种机制,原因除了更节省性能外,在上面的分配器中也有提到。
下面分别对两种机制进行介绍。
AssignerWithPeriodicWatermarks
对每个元素都调用extractTimestamp方法获取时间戳,并维护一个最大时间戳。通过ExecutionConfig.setAutoWatermarkInterval(…)定义生成watermark的间隔(每n毫秒) 。根据这个间隔,周期性调用分配器的getCurrentWatermark()方法,为watermark分配值。
在flink自带的BoundedOutOfOrdernessGenerator分配器中, getCurrentWatermark是定期将当前watermark更新为最大时间戳减去允许延迟时间的值。
以下是两个使用AssignerWithPeriodicWatermarks 生成的时间戳分配器的简单示例:
/**
* This generator generates watermarks assuming that elements arrive out of order,
* but only to a certain degree. The latest elements for a certain timestamp t will arrive
* at most n milliseconds after the earliest elements for timestamp t.
*/
class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks[MyEvent] {
val maxOutOfOrderness = 3500L // 3.5 seconds
var currentMaxTimestamp: Long = _
override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = {
val timestamp = element.getCreationTime()
currentMaxTimestamp = max(timestamp, currentMaxTimestamp)
timestamp
}
override def getCurrentWatermark(): Watermark = {
// return the watermark as current highest timestamp minus the out-of-orderness bound
new Watermark(currentMaxTimestamp - maxOutOfOrderness)
}
}
/**
* This generator generates watermarks that are lagging behind processing time by a fixed amount.
* It assumes that elements arrive in Flink after a bounded delay.
*/
class TimeLagWatermarkGenerator extends AssignerWithPeriodicWatermarks[MyEvent] {
val maxTimeLag = 5000L // 5 seconds
override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = {
element.getCreationTime
}
override def getCurrentWatermark(): Watermark = {
// return the watermark as current time minus the maximum time lag
new Watermark(System.currentTimeMillis() - maxTimeLag)
}
}
AssignerWithPunctuatedWatermarks
根据每个元素的event time生成watermark,通过extractTimestamp(…)方法为元素分配时间戳,通过checkAndGetNextWatermark(…)检查元素的watermark并更新watermark。
checkAndGetNextWatermark(…)方法的第二个参数是extractTimestamp(…) 返回的时间戳,根据这个时间戳决定是否要生成watermark。每当checkAndGetNextWatermark(…) 方法返回一个非空watermark,并且该watermark大于上一个watermark时,就会更新watermark。
class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks[MyEvent] {
override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = {
element.getCreationTime
}
override def checkAndGetNextWatermark(lastElement: MyEvent, extractedTimestamp: Long): Watermark = {
if (lastElement.hasWatermarkMarker()) new Watermark(extractedTimestamp) else null
}
}