Python数据分析案例12——网飞影视剧数据分析及其可视化

news2024/11/23 20:44:29

背景介绍

Netflix是最受欢迎的媒体和视频流平台之一。他们的平台上有超过 8000 部电影或电视节目。截至 2021 年年中,他们在全球拥有超过 2 亿订阅者。

博主看美剧也较为多,像《怪奇物语》、《性爱自修室》等高分美剧都是网飞的。

对于网飞的影视剧,我们可以分析其电影和电视剧的成分占比,发行年份、国家,影视剧类型,收视率,简介关键词等,进行一定程度的描述性统计及其可视化。从而可以得到哪些类型影视剧更受欢迎,哪些国家发行影视剧更多等等结论。

注:(本文不涉及高级复杂的数学模型,主要的核心是数据的描述性分析和可视化。) 


 

关于数据集介绍

此表格数据集来源kaggle,Netflix Movies and TV Shows | Kaggle

包含 Netflix 上可用的所有电影和电视节目的列表,以及演员、导演、评级、发行年份、持续时间等详细信息。

不方便上外网注册kaggle账号的同学可以评论留下邮箱找博主要数据集。


数据读取和清洗

导入数据分析常用的包

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
import seaborn as sns

plt.rcParams ['font.sans-serif'] ='SimHei'              #显示中文
plt.rcParams ['axes.unicode_minus']=False               #显示负号

下面读取数据集转化为pandas数据框对象,删除所有值都为空白的列,把第一列节目标号设置为索引,查看数据前五行

df=pd.read_csv('netflix_titles.csv',encoding='ANSI').dropna(how='all',axis=1).set_index('show_id')
df.head()

可以看到主要都是文本类型数据。


 数据变量介绍和分析

变量信息介绍

‘type’为影视剧类型,即属于电影还是电视剧,分类型变量

‘title’为影视剧名称,文本型变量

‘director' 为导演名字,文本变量

‘cast’为所有演员名称,文本变量

‘ country’为发行制作国家,分类变量

‘date_added’该影视剧在 Netflix 上添加的日期,时间变量

‘release_year’该影视剧实际发布年份,时间变量

‘rating’电影/节目的电视评级,分类变量

‘duration’总持续时间, 分类变量

‘listed_in’影视剧节目类型,多组分类变量

‘description’影视剧简介,文本变量


查看数据的所有变量信息

df=df.infer_objects()
print(df.shape)
df.info()

 从上面数据信息可以看到该数据总共有8798条,11个变量, 有些变量存在一定的缺失值,下面对缺失值进行处理,


数据清洗

对缺失值进行可视化

#观察缺失值
import missingno as msno
msno.matrix(df)

 

可以看出导演这一列出现缺失值较多,演员和发行国家也存在一些缺失值。 由于每个影视剧的导演和演员都是第一无二的,而且是文本型数据,所以这里不能采用均值或者是众数进行填充,我们使用‘无数据’代替空值。

发行国家采用已有数据里面发行影视剧最多的国家进行填充, 其他列存在缺失值的样本可以进行删除。

填充修改

df['country'] = df['country'].fillna(df['country'].mode()[0])
df['cast'].fillna('No Data',inplace  = True)
df['director'].fillna('No Data',inplace  = True)
df.dropna(inplace=True)

去除重复值

df.drop_duplicates(inplace=True)

将时间变量转化为时间格式

便于后面分析,这里将影视剧添加到网飞版块时间的年月作为分类变量提取出来

df["date_added"] = pd.to_datetime(df['date_added'])
df['year_added'] = df['date_added'].dt.year
df['month_name_added']=df['date_added'].dt.month_name()
df['release_year']=df['release_year'].astype('int')

再次查看数据信息

df.info()

 最终剩余8774条样本数据,变量都无缺失值,变量类型都正确,可以进行下面的分析和可视化


分析及其可视化

网飞影视剧中电影和电视剧的各自占比分析

plt.figure(figsize=(2,2),dpi=180)
p1=df.type.value_counts()
plt.pie(p1,labels=p1.index,autopct="%1.3f%%",shadow=True,explode=(0.2,0),colors=['royalblue','pink']) #带阴影,某一块里中心的距离
plt.title("网飞影视剧中电影和电视剧的各自占比")
plt.show()

 可以看出网飞影视剧中电影数量占比更多,将近七层,电视剧占比30%左右。

网飞影视剧中发行国家分析

import squarify
p2=df.country.value_counts()[:15]
fig = plt.figure(figsize = (8,4),dpi=256)
ax = fig.add_subplot(111)
plot = squarify.plot(sizes = p2, # 方块面积大小
                     label = p2.index, # 指定标签
                     #color = colors, # 指定自定义颜色
                     alpha = 0.8, # 指定透明度
                     value = p2, # 添加数值标签
                     edgecolor = 'white', # 设置边界框
                     linewidth =0.1 # 设置边框宽度
                    )
# 设置标题大小
ax.set_title('网飞影视剧数量发行量排名前15的国家',fontsize = 22)
# 去除坐标轴
ax.axis('off')
# 去除上边框和右边框刻度
ax.tick_params(top = 'off', right = 'off')
# 显示图形
plt.show()

 

可以看到,由于网飞是美国的公司,在其本土上的影视作品数量最多,几乎占据了所有影视作品的一半,其次是印度、英国、日本、韩国、加拿大,这五个国家的网飞影视剧也较多。

(只选取了前15的国家,因为国家太多了图就会很乱)

网飞影视剧发行量前10的国家电影和电视剧数量对比分析 

def check0(txt):
    if txt in p2.index[:10]:
        a=True
    else:
        a=False
    return a
df_bool=df.country.astype('str').apply(check0)
p3=pd.crosstab(df[df_bool].type,df[df_bool].country,normalize='columns').T.sort_values(by='TV Show')
m =np.arange(len(p3))
plt.figure(figsize = (8,4),dpi=256)
plt.bar(x=m, height=p3.iloc[:,0], label=p3.columns[0], width=0.3,alpha=0.5, hatch='.',color='orange') 
plt.bar(x=m , height=p3.iloc[:,1], label=p3.columns[1], bottom=p3.iloc[:,0],width=0.3,alpha=0.5,hatch='*',color='lime')
plt.xticks(range(len(p3)),p3.index,fontsize=10,rotation=30)
plt.legend()
plt.ylabel('频率')
plt.title("网飞影视剧发行量前10的国家电影和电视剧数量对比")
plt.show()

 

从网飞发行量前十的国家来看,印度的网飞影视剧的电影占比非常高,其次是埃及,美国。

电视剧占比较高的是韩国、日本、英国。

说明网飞在印度,埃及,美国地区制作拍摄影视剧是更偏向与电影。而在韩国,日本,英国更偏向于电视剧发行。

(只选取了前10的国家,因为国家太多了图就会很乱,国家名称都堆叠在一起放不下去)

影视剧评级分析

p4=df.rating.value_counts()
plt.figure(figsize = (6,3),dpi=256)
sns.barplot(x=p4.index,y=p4)
plt.ylabel('数量')
plt.xlabel('评价')
plt.xticks(fontsize=10,rotation=45)
plt.title("网飞所有影视剧不同评级数量对比")
plt.show()

 可以看到绝大多数的评价都是TV-MA和TV-14,即适合成年人的影视剧和合适14岁以上影视剧的评级。

df_bar=pd.crosstab(df.type,df.rating).T.sort_values(by='Movie',ascending=False).unstack().reset_index().rename(columns={0:'number'})
plt.subplots(figsize = (10,4),dpi=128)
sns.barplot(x=df_bar.rating,y=df_bar.number,hue=df_bar.type,palette = "copper")

 可以看到评级是TV-MA,TV-14和TV-PG的电影和电视剧都有,评级为R和PG的都是电影。

不同发行国家的影视剧评级分析

df_heatmap=df[df_bool].groupby('country')['rating'].value_counts().unstack().sort_index().fillna(0).astype(int).T#.sort_values(by='Movie',ascending=False).T
for col in df_heatmap.columns:
    df_heatmap[col]=df_heatmap[col]/df_heatmap[col].sum()
corr = plt.subplots(figsize = (8,6),dpi=256)
corr= sns.heatmap(df_heatmap,annot=True,square=True,annot_kws={'size':6,'weight':'bold', 'color':'royalblue'},fmt='.2f',cmap='cubehelix_r')
plt.title('不同发行国家的网飞影视剧评级对比')
plt.show()

 

 从上图可以直观的看出绝大多数的网飞影视剧评级都是TV-MA和TV-14,这与前面的结论一致。

从不同发行国家的角度来看,加拿大,法国,墨西哥,西班牙,英国,美国制作发行的网飞影视剧数量更多偏向于适合成年人观看的。

埃及、印度、日本、韩国制作发行的网飞影视剧有较大的频率被评价为适合14岁以上观看的。

这与传统观念一致,欧美等西方国家的影视剧会更加开放一点,而印度日本韩国亚洲国家的影视剧则会更加保守一点。

影视剧上映年份分析

plt.figure(figsize=(8,3.5),dpi=128)
colors=['tomato','orange','royalblue','lime','pink']
for i, mtv in enumerate(df['type'].value_counts().index):
    mtv_rel = df[df['type']==mtv]['year_added'].value_counts().sort_index()
    plt.plot(mtv_rel.index, mtv_rel, color=colors[i], label=mtv)
    plt.fill_between(mtv_rel.index, 0, mtv_rel, color=colors[i], alpha=0.8)
    plt.legend()
plt.ylabel('网飞发行影视剧数量')
plt.xlabel('年份')
plt.title('网飞在不同年份上映影视剧数量')
plt.show()

 可以看出网飞从2014年开始,影视剧数量开始达到一个爆发式的增长状况,尤其在2019年上映的影视剧作品最多。

19年之后受到疫情等影响上映影视作品数量又呈现慢慢下降趋势。

影视剧上映月份分析

plt.figure(figsize=(5,5),dpi=128)
colors=['tomato','orange','royalblue','lime','pink','brown']

p5=df.month_name_added.value_counts()
plt.pie(p5,labels=p5.index,autopct="%1.3f%%",shadow=True,explode=(0.2,0.1,0.08,0.06,0.04,0.02,0,0,0,0,0,0),colors=colors) #带阴影,某一块里中心的距离
plt.title('网飞影视剧上映月份分析')
plt.show()

 

可以看出网飞影视剧数量上映的月份较为均匀,其中七月和十二月上映的电视剧较多,正好也对应了西方的暑假和寒假,假期上映电视剧较多。

上映影视剧最少的是二月和三月。

上映影视剧的年龄分析

df_age=df.assign(age=df.year_added-df.release_year)[['type','age']]
plt.figure(figsize=(3,4),dpi=128)
sns.boxplot(x='type',y='age',width=0.8,data=df_age,orient="v") 
plt.show()

 

可以看出绝大部分的电影或是电视剧的上映时间和发行时间相差不大,中位数在2到3年左右,电影会稍微偏大点,这也反应了好电影比电视剧能一直流传的特点

电影电视剧的异常值都较多,极大值偏多,主要可能是网飞上映收录了不少以前的经典电视剧和电影。

影视剧类型分析

p6=df.assign(kind=df.listed_in.str.split(',')).explode('kind')['kind'].value_counts()[:15]
plt.figure(figsize=(10,4),dpi=128)
sns.barplot(y=p6.index,x=p6,orient="h")
plt.xlabel('影片数量')
plt.ylabel('影视剧类型')
plt.xticks(fontsize=10,rotation=45)
plt.title("网飞不同影视剧类型数量对比")
plt.show()

可以看清楚的看到网飞的影视剧最多的类型是国际电影,然后是戏剧,喜剧,动作冒险片,纪录片

只看美国的影视剧类型

p7=df.assign(kind=df.listed_in.str.split(',')).explode('kind').where(lambda d:d.country=='United States').dropna()['kind'].value_counts()[:12]         
plt.figure(figsize=(5,5),dpi=128)
plt.pie(p7,labels=p7.index,autopct="%1.2f%%",shadow=True,explode=(0.15,0.1,0.08,0.06,0.04,0.02,0,0,0,0,0,0),colors=['c', 'b', 'g', 'tomato', 'm', 'y', 'lime', 'w','orange','pink','grey','tan']) 
plt.title('在美国制作发行的网飞影视剧类型数量对比')
plt.show()

 从上饼图得知在美国网飞上映的影视剧中,纪录片类型的最多,其次是戏剧,喜剧,家庭片,独立电影等。

网飞影视剧的导演和演员分析

p8=df.assign(directo=df.director.str.split(',')).explode('directo')['directo'].value_counts()[1:11]
p9=df.assign(cas=df.cast.str.split(',')).explode('cas')['cas'].value_counts()[1:11]

plt.subplots(1,2,figsize=(12,5),dpi=128)
plt.subplot(121)
sns.barplot(y=p8.index,x=p8,orient="h")
plt.ylabel('导演姓名')
plt.xlabel('导演影视剧的数量',fontsize=14)
plt.title("(a)网飞影视剧导演数量前十的导演")
 
plt.subplot(122)
sns.barplot(y=p9.index,x=p9,orient="h")
plt.ylabel('演员名字')
plt.xlabel('出演影视剧的数量',fontsize=14)
plt.title("(b)网飞影视剧出演数量前十的演员")
#plt.legend()
plt.tight_layout()
plt.show()

从上图得知网飞的影视剧数量前十名的导演,和出演数量前十名的演员。(只能看到名字我也不认识他们.....) ((只选取了前10,因为人名太多了图就会显得很乱))

网飞的影视剧名称的词云图

背景使用网飞的logo

 

from wordcloud import WordCloud
import random
from PIL import Image
import matplotlib
# Custom colour map based on Netflix palette
mask = np.array(Image.open('wf.png'))

cmap = matplotlib.colors.LinearSegmentedColormap.from_list("", ['#221f1f', '#b20710'])
text = str(list(df['title'])).replace(',', '').replace('[', '').replace("'", '').replace(']', '').replace('.', '')
wordcloud = WordCloud(background_color = 'white', width = 500,  height = 200,colormap=cmap, max_words = 150, mask = mask).generate(text)
plt.figure( figsize=(9,5),dpi=1028)
plt.imshow(wordcloud, interpolation = 'bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.show()

 

 可以看到网飞影视剧标题用词数量最高的是'LOVE','World','Day','Life','Girl'等词汇。

网飞的影视剧简介的词云图

text2=str(list(df['description'])).replace(',', '').replace('[', '').replace("'", '').replace(']', '').replace('.', '')
wordcloud = WordCloud(background_color = 'white', width = 500,  height = 200,colormap='coolwarm', max_words =30).generate(text2)
plt.figure( figsize=(8,4),dpi=512)
plt.imshow(wordcloud, interpolation = 'bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.show()

 可以看到网飞影视剧简介用词频率最高的是'life','family','love','find','new'等词汇。


总结

通过分析网飞的八千多部影视剧的数据,我们能得到如下的一些结论:

1、网飞影视剧中电影数量占比更多,将近七层,电视剧占比30%左右

2、由于网飞是美国的公司,在其本土上的影视作品数量最多,几乎占据了网飞所有影视作品的一半, 其次是印度、英国、日本、韩国、加拿大,这五个国家的网飞影视剧也较多。

3、网飞在印度,埃及,美国地区制作拍摄影视剧是更偏向与电影。而在韩国,日本,英国更偏向于电视剧发行。

4、网飞绝大多数的影视剧评级都是TV-MA和TV-14,即适合成年人的影视剧和合适14岁以上影视剧的评级。

5、网飞影视剧的发行国家和影视剧的评级有关,欧美等西方国家的影视剧会更加开放一点,而印度日本韩国亚洲国家的影视剧则会更加保守一点。

6、2014年开始,影视剧数量开始达到一个爆发式的增长状况,尤其在2019年上映的影视剧作品最多。19年之后受到疫情等影响上映影视作品数量又呈现慢慢下降趋势。

7、网飞影视剧数量上映的月份较为均匀,其中七月和十二月上映的电视剧较多,正好也对应了西方的暑假和寒假,假期上映电视剧较多。上映影视剧最少的是二月和三月。

8、网飞的大部分的电影或是电视剧的上映时间和发行时间相差不大,电影会稍微偏大点,反应了好电影比电视剧能一直流传的特点。电影电视剧的异常值都较多,极大值偏多,主要可能是网飞上映收录了不少以前的经典电视剧和电影

9、网飞的影视剧最多的类型是国际电影,然后是戏剧,喜剧,动作冒险片,纪录片。

10、在美国网飞上映的影视剧中,纪录片类型的最多,其次是戏剧,喜剧,家庭片,独立电影等。

11、得知网飞的影视剧数量前十名的导演,和出演数量前十名的演员。

12、网飞影视剧标题用词数量最高的是'LOVE','World','Day','Life','Girl'等词汇。

13、网飞影视剧简介用词频率最高的是'life','family','love','find','new'等词汇


本文由于没有用很复杂的数学模型,得到的结论不算很高级,但是也很有效有意义了。excel可做不出来这效果...大家可以核心地学学这些画图的方法吧,毕竟漂亮的图像和有效地结论才是可视化的意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/51265.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Docker学习系列】Docker学习1-docker安装

从本篇开始,凯哥将和大家一起学学docker。本篇是docker学习系列第一篇:安装docker。 docker安装前提条件:目前,centos发行版中的内核支持Docker.Docker运行在Centos7 64位上,要求系统为64位、linux系统内核版本为3.8以上的。凯哥所…

mybatis实战:三、mybatis多表查询的映射

依照上一期的继续 1.UserMapper.xml 除了直接对应基本数据类类型、表的实体类&#xff0c;还可能用到多表查询。 <select id"selectRolesByUserId" resultType"tk.mybatis.simple.model.SysRole">select r.id, r.role_name roleName, r.enabled, r…

一篇个人陈述应该包括这三个内容

大家好呀&#xff0c;申请季正如火如荼地进行着&#xff0c;不知道大家都忙碌得怎么样了呢&#xff1f;今天我们来聊聊个人陈述Personal statement,的撰写&#xff0c;包括一篇个人陈述应该包括哪些部分。 申请时&#xff0c;除了学习成绩等“硬背景”&#xff0c;个人陈述(PS…

五款朴实无华却又能极大提升办公效率的软件

最近后台收到好多小伙伴的私信&#xff0c;今天继续推荐五款小工具&#xff0c;都是免费使用的&#xff0c;大家可以去试试看。 1.光追动画制作——Luxion KeyShot Luxion KeyShot是一款互动性的光线追踪与全域光渲染3D渲染与动画制作软件&#xff0c;内置丰富多样的材质&…

Redis使用基础教程

本篇文章转载自&#xff1a;通俗易懂的Redis数据结构基础教程_Java程序员-张凯的博客-CSDN博客 Redis有5个基本数据结构&#xff0c;string、list、hash、set和zset。它们是日常开发中使用频率非常高应用最为广泛的数据结构&#xff0c;把这5个数据结构都吃透了&#xff0c;你…

Spring Security-全面详解(学习总结---从入门到深化)

目录 Spring Security介绍 Spring Security认证_项目搭建 Spring Security认证_内存认证 Spring Security认证_UserDetailsService Spring Security认证_数据库认证 Spring Security认证_PasswordEncoder Spring Security认证_自定义登录页面 Spring Security认证_会…

package-info.java

package-info.java 文件估计大家见过但是自己却很少去创建和使用它、因为对于一般应用来说可能真的太少见了。 它的作用主要是三个 描述包使用注解修饰包、达到修饰该包下的类声明包中使用的类和常量(这个比较少用) 描述包 package-info.java 文件 /*** 我是描述信息*/ pa…

如何用蓝牙实现无线定位(三)--本地定位显示

1. 被定位目标 本项目设计有两个定位装置&#xff0c;一个用于固定目标&#xff0c;一个用于可移动设备。在定位系统的帮助下&#xff0c;我们可以操作可移动设备向固定目标移动。假设这是一个救援场景的话&#xff0c;我们就可以把固定的目标看作等待救援的人或物&#xff0c;…

【使用 BERT 的问答系统】第 2 章 :用于自然语言处理的神经网络

&#x1f50e;大家好&#xff0c;我是Sonhhxg_柒&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流&#x1f50e; &#x1f4dd;个人主页&#xff0d;Sonhhxg_柒的博客_CSDN博客 &#x1f4c3; &#x1f381;欢迎各位→点赞…

大数据开发之词频统计传参打包成jar包发送到Hadoop运行并创建可执行文件方便运行

文章目录添加spark的jar包main传参调试打包成jar包发送到Hadoop运行使用脚本运行参考添加spark的jar包 点击Project Structure Global Libararies中 点击 选择java 然后选择spark文件里的jars下所有的jar包 然后点击ok即可。 main传参调试 首先给出词频统计代码 //包 imp…

OpenCV图像处理——光流估计

总目录 图像处理总目录←点击这里 二十二、光流估计 22.1、原理 光流 是空间运动物体在观测成像平面上的像素运动的“瞬时速度”&#xff0c;根据各个像素点的速度矢量特征&#xff0c;可以对图像进行动态分析&#xff0c;例如目标跟踪。 亮度恒定&#xff1a;同一点随着时…

HTML5期末考核大作业——学生网页设计作业源码HTML+CSS+JavaScript 中华美德6页面带音乐文化

&#x1f468;‍&#x1f393;静态网站的编写主要是用HTML DIVCSS JS等来完成页面的排版设计&#x1f469;‍&#x1f393;,常用的网页设计软件有Dreamweaver、EditPlus、HBuilderX、VScode 、Webstorm、Animate等等&#xff0c;用的最多的还是DW&#xff0c;当然不同软件写出的…

LeetCode HOT 100 —— 76 .最小覆盖子串

题目 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串&#xff0c;则返回空字符串"" 。 思路 **滑动窗口&#xff1a;**题目要求返回字符串s中包含字符串t的全部字符的最小窗口&#xff0c;即包含t的…

世界杯的那些二三事

文章目录 &#x1f525;关于世界杯 &#x1f525;关于2022卡塔尔世界杯 &#x1f525;我与世界杯 ⚽分享一颗足球 ⚽实现效果 &#x1f525;关于世界杯 大力神杯 国际足联世界杯&#xff08;FIFA World Cup&#xff09;&#xff0c;简称“世界杯”&#xff0c;是由全世界…

【自然语言处理(NLP)】基于Bi-DAF的机器阅读理解

【自然语言处理&#xff08;NLP&#xff09;】基于Bi-DAF的机器阅读理解 作者简介&#xff1a;在校大学生一枚&#xff0c;华为云享专家&#xff0c;阿里云专家博主&#xff0c;腾云先锋&#xff08;TDP&#xff09;成员&#xff0c;云曦智划项目总负责人&#xff0c;全国高等学…

java+jsp基于ssm汽车配件管理系统-计算机毕业设计

项目介绍 本汽车配件管理系统是针对目前网上车企的实际需求&#xff0c;从实际工作出发&#xff0c;对过去的汽车配件管理系统存在的问题进行分析&#xff0c;结合计算机系统的结构、概念、模型、原理、方法&#xff0c;在计算机各种优势的情况下&#xff0c;采用目前最流行的…

利用Python生成随机密码,灰常简单,小伙伴可以试试哟

知识点 文件读写 基础语法 字符串处理 字符拼接 Python合集视频 【整整800集】Python爬虫项目零基础入门合集&#xff0c;细狗都学会了&#xff0c;你还不会&#xff1f;代码解析 导入模块 import platform import string import random将string的几大字符串拼接在一起&…

Spring Boot实现任意位置的properties及yml文件内容配置与获取

〇、参考资料 1、Spring Boot 中文乱码问题解决方案汇总 https://blog.51cto.com/u_15236724/5372824 2、spring boot读取自定义配置properties文件★ https://www.yisu.com/zixun/366877.html 3、spring boot通过配置工厂类&#xff0c;实现读取指定位置的yml文件★ https://b…

TensorFlow之文本分类算法-5

1 前言 2 收集数据 3 探索数据 4 选择模型 5 准备数据 6 模型-构建训练评估 构建输出层 构建n-gram模型 根据前面章节的描述&#xff0c;n-gram模型是独立地处理分词&#xff0c;与原文中的单词顺序不相关。简单的多层神经感知&#xff08;逻辑回归&#xff09;、梯度推…

SCP命令在不同远程服务器之间发送文件(指定端口)

最近想把数据集放在另一个服务器上&#xff0c;但是如果先下载到本地然后再上传过去&#xff0c;则需要浪费好久时间。 特总结下如何快捷的通过命令完成不同远程服务器之间的文件传输&#xff0c;以及遇到的问题。 SCP命令 Linux scp 命令用于 Linux 之间复制文件和目录。1 s…