DDIM模型代码实现

news2024/12/25 12:18:20

背景

前面已经出了一系列的文章来介绍大模型、多模态、生成模型。这篇文章会从更微观和更贴近实际工作的角度下手。会给大家介绍下前面讲到的diffuiosn model具体怎么来实现。文章结构如下:

1.介绍Diffusion Model包括哪些零部件,这些零部件衔接关系

2.介绍介绍每部分零件的核心代码实现

3.介绍如何把这些零部件挂载到框架变成一个系统

4.小结部分

宏观模型介绍

上面的图是Diffusion Model训练过程中,一个step输入、输出、网络结构。

1.输入包括了:

a.代表这是第几个step的Time Representation

b.上图轮合成图

2.预测噪声的网络就是Unet

3.用过sd webui的用户应该对**schedule,如果看上面图,没发现这个**schedule在哪,那这东西是哪个部件呢,这部分李宏毅老师的视频里讲的比较清楚,下面图是从他视频里面截去处来的。

**schedule其实是在一个step中额外加进来的噪声(下图黄色Z)。加这部分原因个人猜测,是对随机生成过程这个生成流程的概率分布假设。如果知识用预测的噪声作为加噪,整个生成的链路就是固定的,只有每个step里面生成分布是符合一定分布的。为了保证生成链路是符合一定分布,加入噪声来做采样,让生成链路不是固定的,而是符合一定概率分布的。

代码实现

1.Time Representation

第几步就是用一个向量来表示,具体实现如下面代码

def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = th.exp(
        -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
    if dim % 2:
        embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
    return embedding

time representation是要输入到unet模型里面的,接在residual block,衔接部分代码如下:

class TimestepBlock(nn.Module):
    """
    Any module where forward() takes timestep embeddings as a second argument.
    """

    @abstractmethod
    def forward(self, x, emb):
        """
        Apply the module to `x` given `emb` timestep embeddings.
        """


class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
    """
    A sequential module that passes timestep embeddings to the children that
    support it as an extra input.
    """

    def forward(self, x, emb):
        for layer in self:
            if isinstance(layer, TimestepBlock):
                x = layer(x, emb)
            else:
                x = layer(x)
        return x

2.Unet:

UNet,其主要结构如下图所示(这里以输入的latent为64x64x4维度为例),其中encoder部分包括3个CrossAttnDownBlock2D模块和1个DownBlock2D模块,而decoder部分包括1个UpBlock2D模块和3个CrossAttnUpBlock2D模块,中间还有一个UNetMidBlock2DCrossAttn模块。encoder和decoder两个部分是完全对应的,中间存在skip connection。注意3个CrossAttnDownBlock2D模块最后均有一个2x的downsample操作,而DownBlock2D模块是不包含下采样的。

其中CrossAttnDownBlock2D模块的主要结构如下图所示,text condition将通过CrossAttention模块嵌入进来,此时Attention的query是UNet的中间特征,而key和value则是text embeddings。

如上图所示,每个cross attention block其实就是time step、图信息融合的模块,这个模块包括了resnet block组件、selfattention组件、feed forward、crossattention组件。下面会具体介绍这些组件如何实现:

U-Net的核心模块是residual block,它包含两个卷积层以及shortcut,同时也要引入time embedding,这里额外定义了一个linear层来将time embedding变换为和特征维度一致,第一conv之后通过加上time embedding来编码time:

class ResBlock(TimestepBlock):
    """
    A residual block that can optionally change the number of channels.

    :param channels: the number of input channels.
    :param emb_channels: the number of timestep embedding channels.
    :param dropout: the rate of dropout.
    :param out_channels: if specified, the number of out channels.
    :param use_conv: if True and out_channels is specified, use a spatial
        convolution instead of a smaller 1x1 convolution to change the
        channels in the skip connection.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param use_checkpoint: if True, use gradient checkpointing on this module.
    """

    def __init__(
        self,
        channels,
        emb_channels,
        dropout,
        out_channels=None,
        use_conv=False,
        use_scale_shift_norm=False,
        dims=2,
        use_checkpoint=False,
    ):
        super().__init__()
        self.channels = channels
        self.emb_channels = emb_channels
        self.dropout = dropout
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_checkpoint = use_checkpoint
        self.use_scale_shift_norm = use_scale_shift_norm

        #第一层卷积
        self.in_layers = nn.Sequential(
            normalization(channels),
            SiLU(),
            conv_nd(dims, channels, self.out_channels, 3, padding=1),
        )
        #把time step emedding注入进来
        self.emb_layers = nn.Sequential(
            SiLU(),
            linear(
                emb_channels,
                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
            ),
        )
        #第二层卷积
        self.out_layers = nn.Sequential(
            normalization(self.out_channels),
            SiLU(),
            nn.Dropout(p=dropout),
            zero_module(
                conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
            ),
        )

        if self.out_channels == channels:
            self.skip_connection = nn.Identity()
        elif use_conv:
            self.skip_connection = conv_nd(
                dims, channels, self.out_channels, 3, padding=1
            )
        else:
            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)

    def forward(self, x, emb):
        """
        Apply the block to a Tensor, conditioned on a timestep embedding.

        :param x: an [N x C x ...] Tensor of features.
        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
        :return: an [N x C x ...] Tensor of outputs.
        """
        return checkpoint(
            self._forward, (x, emb), self.parameters(), self.use_checkpoint
        )

    def _forward(self, x, emb):
        h = self.in_layers(x)
        emb_out = self.emb_layers(emb).type(h.dtype)
        while len(emb_out.shape) < len(h.shape):
            emb_out = emb_out[..., None]
        if self.use_scale_shift_norm:
            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
            scale, shift = th.chunk(emb_out, 2, dim=1)
            h = out_norm(h) * (1 + scale) + shift
            h = out_rest(h)
        else:
            h = h + emb_out
            h = self.out_layers(h)
        return self.skip_connection(x) + h

这里还在部分residual block引入了attention:

class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(self, channels, num_heads=1, use_checkpoint=False):
        super().__init__()
        self.channels = channels
        self.num_heads = num_heads
        self.use_checkpoint = use_checkpoint

        self.norm = normalization(channels)
        self.qkv = conv_nd(1, channels, channels * 3, 1)
        self.attention = QKVAttention()
        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))

    def forward(self, x):
        return checkpoint(self._forward, (x,), self.parameters(), self.use_checkpoint)

    def _forward(self, x):
        b, c, *spatial = x.shape
        x = x.reshape(b, c, -1)
        qkv = self.qkv(self.norm(x))
        qkv = qkv.reshape(b * self.num_heads, -1, qkv.shape[2])
        h = self.attention(qkv)
        h = h.reshape(b, -1, h.shape[-1])
        h = self.proj_out(h)
        return (x + h).reshape(b, c, *spatial)

上采样模块和下采样模块,其分别可以采用插值和stride=2的conv或者pooling来实现:

class Upsample(nn.Module):
    """
    An upsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 upsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2):
        super().__init__()
        self.channels = channels
        self.use_conv = use_conv
        self.dims = dims
        if use_conv:
            self.conv = conv_nd(dims, channels, channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.dims == 3:
            x = F.interpolate(
                x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
            )
        else:
            x = F.interpolate(x, scale_factor=2, mode="nearest")
        if self.use_conv:
            x = self.conv(x)
        return x


class Downsample(nn.Module):
    """
    A downsampling layer with an optional convolution.

    :param channels: channels in the inputs and outputs.
    :param use_conv: a bool determining if a convolution is applied.
    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
                 downsampling occurs in the inner-two dimensions.
    """

    def __init__(self, channels, use_conv, dims=2):
        super().__init__()
        self.channels = channels
        self.use_conv = use_conv
        self.dims = dims
        stride = 2 if dims != 3 else (1, 2, 2)
        if use_conv:
            self.op = conv_nd(dims, channels, channels, 3, stride=stride, padding=1)
        else:
            self.op = avg_pool_nd(stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.op(x)

把上面的各组件串起来组成UNet网络:

class UNetModel(nn.Module):
    """
    The full UNet model with attention and timestep embedding.

    :param in_channels: channels in the input Tensor.
    :param model_channels: base channel count for the model.
    :param out_channels: channels in the output Tensor.
    :param num_res_blocks: number of residual blocks per downsample.
    :param attention_resolutions: a collection of downsample rates at which
        attention will take place. May be a set, list, or tuple.
        For example, if this contains 4, then at 4x downsampling, attention
        will be used.
    :param dropout: the dropout probability.
    :param channel_mult: channel multiplier for each level of the UNet.
    :param conv_resample: if True, use learned convolutions for upsampling and
        downsampling.
    :param dims: determines if the signal is 1D, 2D, or 3D.
    :param num_classes: if specified (as an int), then this model will be
        class-conditional with `num_classes` classes.
    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
    :param num_heads: the number of attention heads in each attention layer.
    """

    def __init__(
        self,
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=0,
        channel_mult=(1, 2, 4, 8),
        conv_resample=True,
        dims=2,
        num_classes=None,
        use_checkpoint=False,
        num_heads=1,
        num_heads_upsample=-1,
        use_scale_shift_norm=False,
    ):
        super().__init__()

        if num_heads_upsample == -1:
            num_heads_upsample = num_heads

        self.in_channels = in_channels
        self.model_channels = model_channels
        self.out_channels = out_channels
        self.num_res_blocks = num_res_blocks
        self.attention_resolutions = attention_resolutions
        self.dropout = dropout
        self.channel_mult = channel_mult
        self.conv_resample = conv_resample
        self.num_classes = num_classes
        self.use_checkpoint = use_checkpoint
        self.num_heads = num_heads
        self.num_heads_upsample = num_heads_upsample

        #time embbding
        time_embed_dim = model_channels * 4
        self.time_embed = nn.Sequential(
            linear(model_channels, time_embed_dim),
            SiLU(),
            linear(time_embed_dim, time_embed_dim),
        )

        if self.num_classes is not None:
            self.label_emb = nn.Embedding(num_classes, time_embed_dim)

        #下采样模块
        self.input_blocks = nn.ModuleList(
            [
                TimestepEmbedSequential(
                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
                )
            ]
        )
        input_block_chans = [model_channels]
        ch = model_channels
        ds = 1
        for level, mult in enumerate(channel_mult):
            for _ in range(num_res_blocks):
                layers = [
                    ResBlock(
                        ch,
                        time_embed_dim,
                        dropout,
                        out_channels=mult * model_channels,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = mult * model_channels
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch, use_checkpoint=use_checkpoint, num_heads=num_heads
                        )
                    )
                self.input_blocks.append(TimestepEmbedSequential(*layers))
                input_block_chans.append(ch)
            if level != len(channel_mult) - 1:
                self.input_blocks.append(
                    TimestepEmbedSequential(Downsample(ch, conv_resample, dims=dims))
                )
                input_block_chans.append(ch)
                ds *= 2

        #middle block(就是上面橙色模块,衔接encode和decode的部分)
        self.middle_block = TimestepEmbedSequential(
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
            AttentionBlock(ch, use_checkpoint=use_checkpoint, num_heads=num_heads),
            ResBlock(
                ch,
                time_embed_dim,
                dropout,
                dims=dims,
                use_checkpoint=use_checkpoint,
                use_scale_shift_norm=use_scale_shift_norm,
            ),
        )

        #decode部分,上面图黄色部分
        self.output_blocks = nn.ModuleList([])
        for level, mult in list(enumerate(channel_mult))[::-1]:
            for i in range(num_res_blocks + 1):
                layers = [
                    ResBlock(
                        ch + input_block_chans.pop(),
                        time_embed_dim,
                        dropout,
                        out_channels=model_channels * mult,
                        dims=dims,
                        use_checkpoint=use_checkpoint,
                        use_scale_shift_norm=use_scale_shift_norm,
                    )
                ]
                ch = model_channels * mult
                if ds in attention_resolutions:
                    layers.append(
                        AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads_upsample,
                        )
                    )
                if level and i == num_res_blocks:
                    layers.append(Upsample(ch, conv_resample, dims=dims))
                    ds //= 2
                self.output_blocks.append(TimestepEmbedSequential(*layers))

        self.out = nn.Sequential(
            normalization(ch),
            SiLU(),
            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
        )

3.schedule

针对每个step的训练,网络架构上看就差一个产生过程随机的schedule,下图黄色部分:

def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
    """
    Get a pre-defined beta schedule for the given name.

    The beta schedule library consists of beta schedules which remain similar
    in the limit of num_diffusion_timesteps.
    Beta schedules may be added, but should not be removed or changed once
    they are committed to maintain backwards compatibility.
    """
    if schedule_name == "linear":
        # Linear schedule from Ho et al, extended to work for any number of
        # diffusion steps.
        scale = 1000 / num_diffusion_timesteps
        beta_start = scale * 0.0001
        beta_end = scale * 0.02
        return np.linspace(
            beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
        )
    elif schedule_name == "cosine":
        return betas_for_alpha_bar(
            num_diffusion_timesteps,
            lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
        )
    else:
        raise NotImplementedError(f"unknown beta schedule: {schedule_name}")

def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function,
    which defines the cumulative product of (1-beta) over time from t = [0,1].

    :param num_diffusion_timesteps: the number of betas to produce.
    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
                      produces the cumulative product of (1-beta) up to that
                      part of the diffusion process.
    :param max_beta: the maximum beta to use; use values lower than 1 to
                     prevent singularities.
    """
    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return np.array(betas)

4.从一个step到多step

上面其实只是一个diffusion model的一个step过程,diffusion包含的是一个多step的随机过程,这部分的衔接代码如下。

class GaussianDiffusion:
    """
    Utilities for training and sampling diffusion models.

    Ported directly from here, and then adapted over time to further experimentation.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42

    :param betas: a 1-D numpy array of betas for each diffusion timestep,
                  starting at T and going to 1.
    :param model_mean_type: a ModelMeanType determining what the model outputs.
    :param model_var_type: a ModelVarType determining how variance is output.
    :param loss_type: a LossType determining the loss function to use.
    :param rescale_timesteps: if True, pass floating point timesteps into the
                              model so that they are always scaled like in the
                              original paper (0 to 1000).
    """

    def __init__(
        self,
        *,
        betas,
        model_mean_type,
        model_var_type,
        loss_type,
        rescale_timesteps=False,
    ):
        self.model_mean_type = model_mean_type
        self.model_var_type = model_var_type
        self.loss_type = loss_type
        self.rescale_timesteps = rescale_timesteps

        # Use float64 for accuracy.
        betas = np.array(betas, dtype=np.float64)
        self.betas = betas
        assert len(betas.shape) == 1, "betas must be 1-D"
        assert (betas > 0).all() and (betas <= 1).all()

        self.num_timesteps = int(betas.shape[0])

        alphas = 1.0 - betas
        self.alphas_cumprod = np.cumprod(alphas, axis=0)
        self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
        self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
        assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
        self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
        self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
        self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        self.posterior_variance = (
            betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        # log calculation clipped because the posterior variance is 0 at the
        # beginning of the diffusion chain.
        self.posterior_log_variance_clipped = np.log(
            np.append(self.posterior_variance[1], self.posterior_variance[1:])
        )
        self.posterior_mean_coef1 = (
            betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
        )
        self.posterior_mean_coef2 = (
            (1.0 - self.alphas_cumprod_prev)
            * np.sqrt(alphas)
            / (1.0 - self.alphas_cumprod)
        )

    def q_mean_variance(self, x_start, t):
        """
        Get the distribution q(x_t | x_0).

        :param x_start: the [N x C x ...] tensor of noiseless inputs.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
        """
        mean = (
            _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        )
        variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
        log_variance = _extract_into_tensor(
            self.log_one_minus_alphas_cumprod, t, x_start.shape
        )
        return mean, variance, log_variance

    def q_sample(self, x_start, t, noise=None):
        """
        Diffuse the data for a given number of diffusion steps.

        In other words, sample from q(x_t | x_0).

        :param x_start: the initial data batch.
        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
        :param noise: if specified, the split-out normal noise.
        :return: A noisy version of x_start.
        """
        if noise is None:
            noise = th.randn_like(x_start)
        assert noise.shape == x_start.shape
        return (
            _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
            + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
            * noise
        )

    def q_posterior_mean_variance(self, x_start, x_t, t):
        """
        Compute the mean and variance of the diffusion posterior:

            q(x_{t-1} | x_t, x_0)

        """
        assert x_start.shape == x_t.shape
        posterior_mean = (
            _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
            + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = _extract_into_tensor(
            self.posterior_log_variance_clipped, t, x_t.shape
        )
        assert (
            posterior_mean.shape[0]
            == posterior_variance.shape[0]
            == posterior_log_variance_clipped.shape[0]
            == x_start.shape[0]
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(
        self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
    ):
        """
        Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
        the initial x, x_0.

        :param model: the model, which takes a signal and a batch of timesteps
                      as input.
        :param x: the [N x C x ...] tensor at time t.
        :param t: a 1-D Tensor of timesteps.
        :param clip_denoised: if True, clip the denoised signal into [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample. Applies before
            clip_denoised.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :return: a dict with the following keys:
                 - 'mean': the model mean output.
                 - 'variance': the model variance output.
                 - 'log_variance': the log of 'variance'.
                 - 'pred_xstart': the prediction for x_0.
        """
        if model_kwargs is None:
            model_kwargs = {}

        B, C = x.shape[:2]
        assert t.shape == (B,)
        model_output = model(x, self._scale_timesteps(t), **model_kwargs)

        if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
            assert model_output.shape == (B, C * 2, *x.shape[2:])
            model_output, model_var_values = th.split(model_output, C, dim=1)
            if self.model_var_type == ModelVarType.LEARNED:
                model_log_variance = model_var_values
                model_variance = th.exp(model_log_variance)
            else:
                min_log = _extract_into_tensor(
                    self.posterior_log_variance_clipped, t, x.shape
                )
                max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
                # The model_var_values is [-1, 1] for [min_var, max_var].
                frac = (model_var_values + 1) / 2
                model_log_variance = frac * max_log + (1 - frac) * min_log
                model_variance = th.exp(model_log_variance)
        else:
            model_variance, model_log_variance = {
                # for fixedlarge, we set the initial (log-)variance like so
                # to get a better decoder log likelihood.
                ModelVarType.FIXED_LARGE: (
                    np.append(self.posterior_variance[1], self.betas[1:]),
                    np.log(np.append(self.posterior_variance[1], self.betas[1:])),
                ),
                ModelVarType.FIXED_SMALL: (
                    self.posterior_variance,
                    self.posterior_log_variance_clipped,
                ),
            }[self.model_var_type]
            model_variance = _extract_into_tensor(model_variance, t, x.shape)
            model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)

        def process_xstart(x):
            if denoised_fn is not None:
                x = denoised_fn(x)
            if clip_denoised:
                return x.clamp(-1, 1)
            return x

        if self.model_mean_type == ModelMeanType.PREVIOUS_X:
            pred_xstart = process_xstart(
                self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
            )
            model_mean = model_output
        elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
            if self.model_mean_type == ModelMeanType.START_X:
                pred_xstart = process_xstart(model_output)
            else:
                pred_xstart = process_xstart(
                    self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
                )
            model_mean, _, _ = self.q_posterior_mean_variance(
                x_start=pred_xstart, x_t=x, t=t
            )
        else:
            raise NotImplementedError(self.model_mean_type)

        assert (
            model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
        )
        return {
            "mean": model_mean,
            "variance": model_variance,
            "log_variance": model_log_variance,
            "pred_xstart": pred_xstart,
        }

    def _predict_xstart_from_eps(self, x_t, t, eps):
        assert x_t.shape == eps.shape
        return (
            _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
        )

    def _predict_xstart_from_xprev(self, x_t, t, xprev):
        assert x_t.shape == xprev.shape
        return (  # (xprev - coef2*x_t) / coef1
            _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
            - _extract_into_tensor(
                self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
            )
            * x_t
        )

    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
        return (
            _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
            - pred_xstart
        ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)

    def _scale_timesteps(self, t):
        if self.rescale_timesteps:
            return t.float() * (1000.0 / self.num_timesteps)
        return t

    def p_sample(
        self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
    ):
        """
        Sample x_{t-1} from the model at the given timestep.

        :param model: the model to sample from.
        :param x: the current tensor at x_{t-1}.
        :param t: the value of t, starting at 0 for the first diffusion step.
        :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :return: a dict containing the following keys:
                 - 'sample': a random sample from the model.
                 - 'pred_xstart': a prediction of x_0.
        """
        out = self.p_mean_variance(
            model,
            x,
            t,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
        )
        noise = th.randn_like(x)
        nonzero_mask = (
            (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
        )  # no noise when t == 0
        sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
        return {"sample": sample, "pred_xstart": out["pred_xstart"]}

    def p_sample_loop(
        self,
        model,
        shape,
        noise=None,
        clip_denoised=True,
        denoised_fn=None,
        model_kwargs=None,
        device=None,
        progress=False,
    ):
        """
        Generate samples from the model.

        :param model: the model module.
        :param shape: the shape of the samples, (N, C, H, W).
        :param noise: if specified, the noise from the encoder to sample.
                      Should be of the same shape as `shape`.
        :param clip_denoised: if True, clip x_start predictions to [-1, 1].
        :param denoised_fn: if not None, a function which applies to the
            x_start prediction before it is used to sample.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :param device: if specified, the device to create the samples on.
                       If not specified, use a model parameter's device.
        :param progress: if True, show a tqdm progress bar.
        :return: a non-differentiable batch of samples.
        """
        final = None
        for sample in self.p_sample_loop_progressive(
            model,
            shape,
            noise=noise,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
            device=device,
            progress=progress,
        ):
            final = sample
        return final["sample"]

    def p_sample_loop_progressive(
        self,
        model,
        shape,
        noise=None,
        clip_denoised=True,
        denoised_fn=None,
        model_kwargs=None,
        device=None,
        progress=False,
    ):
        """
        Generate samples from the model and yield intermediate samples from
        each timestep of diffusion.

        Arguments are the same as p_sample_loop().
        Returns a generator over dicts, where each dict is the return value of
        p_sample().
        """
        if device is None:
            device = next(model.parameters()).device
        assert isinstance(shape, (tuple, list))
        if noise is not None:
            img = noise
        else:
            img = th.randn(*shape, device=device)
        indices = list(range(self.num_timesteps))[::-1]

        if progress:
            # Lazy import so that we don't depend on tqdm.
            from tqdm.auto import tqdm

            indices = tqdm(indices)

        for i in indices:
            t = th.tensor([i] * shape[0], device=device)
            with th.no_grad():
                out = self.p_sample(
                    model,
                    img,
                    t,
                    clip_denoised=clip_denoised,
                    denoised_fn=denoised_fn,
                    model_kwargs=model_kwargs,
                )
                yield out
                img = out["sample"]

    def ddim_sample(
        self,
        model,
        x,
        t,
        clip_denoised=True,
        denoised_fn=None,
        model_kwargs=None,
        eta=0.0,
    ):
        """
        Sample x_{t-1} from the model using DDIM.

        Same usage as p_sample().
        """
        out = self.p_mean_variance(
            model,
            x,
            t,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
        )
        # Usually our model outputs epsilon, but we re-derive it
        # in case we used x_start or x_prev prediction.
        eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
        alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
        alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
        sigma = (
            eta
            * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
            * th.sqrt(1 - alpha_bar / alpha_bar_prev)
        )
        # Equation 12.
        noise = th.randn_like(x)
        mean_pred = (
            out["pred_xstart"] * th.sqrt(alpha_bar_prev)
            + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
        )
        nonzero_mask = (
            (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
        )  # no noise when t == 0
        sample = mean_pred + nonzero_mask * sigma * noise
        return {"sample": sample, "pred_xstart": out["pred_xstart"]}

    def ddim_reverse_sample(
        self,
        model,
        x,
        t,
        clip_denoised=True,
        denoised_fn=None,
        model_kwargs=None,
        eta=0.0,
    ):
        """
        Sample x_{t+1} from the model using DDIM reverse ODE.
        """
        assert eta == 0.0, "Reverse ODE only for deterministic path"
        out = self.p_mean_variance(
            model,
            x,
            t,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
        )
        # Usually our model outputs epsilon, but we re-derive it
        # in case we used x_start or x_prev prediction.
        eps = (
            _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
            - out["pred_xstart"]
        ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
        alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)

        # Equation 12. reversed
        mean_pred = (
            out["pred_xstart"] * th.sqrt(alpha_bar_next)
            + th.sqrt(1 - alpha_bar_next) * eps
        )

        return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}

    def ddim_sample_loop(
        self,
        model,
        shape,
        noise=None,
        clip_denoised=True,
        denoised_fn=None,
        model_kwargs=None,
        device=None,
        progress=False,
        eta=0.0,
    ):
        """
        Generate samples from the model using DDIM.

        Same usage as p_sample_loop().
        """
        final = None
        for sample in self.ddim_sample_loop_progressive(
            model,
            shape,
            noise=noise,
            clip_denoised=clip_denoised,
            denoised_fn=denoised_fn,
            model_kwargs=model_kwargs,
            device=device,
            progress=progress,
            eta=eta,
        ):
            final = sample
        return final["sample"]

    def ddim_sample_loop_progressive(
        self,
        model,
        shape,
        noise=None,
        clip_denoised=True,
        denoised_fn=None,
        model_kwargs=None,
        device=None,
        progress=False,
        eta=0.0,
    ):
        """
        Use DDIM to sample from the model and yield intermediate samples from
        each timestep of DDIM.

        Same usage as p_sample_loop_progressive().
        """
        if device is None:
            device = next(model.parameters()).device
        assert isinstance(shape, (tuple, list))
        if noise is not None:
            img = noise
        else:
            img = th.randn(*shape, device=device)
        indices = list(range(self.num_timesteps))[::-1]

        if progress:
            # Lazy import so that we don't depend on tqdm.
            from tqdm.auto import tqdm

            indices = tqdm(indices)

        for i in indices:
            t = th.tensor([i] * shape[0], device=device)
            with th.no_grad():
                out = self.ddim_sample(
                    model,
                    img,
                    t,
                    clip_denoised=clip_denoised,
                    denoised_fn=denoised_fn,
                    model_kwargs=model_kwargs,
                    eta=eta,
                )
                yield out
                img = out["sample"]

    def _vb_terms_bpd(
        self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
    ):
        """
        Get a term for the variational lower-bound.

        The resulting units are bits (rather than nats, as one might expect).
        This allows for comparison to other papers.

        :return: a dict with the following keys:
                 - 'output': a shape [N] tensor of NLLs or KLs.
                 - 'pred_xstart': the x_0 predictions.
        """
        true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
            x_start=x_start, x_t=x_t, t=t
        )
        out = self.p_mean_variance(
            model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
        )
        kl = normal_kl(
            true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
        )
        kl = mean_flat(kl) / np.log(2.0)

        decoder_nll = -discretized_gaussian_log_likelihood(
            x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
        )
        assert decoder_nll.shape == x_start.shape
        decoder_nll = mean_flat(decoder_nll) / np.log(2.0)

        # At the first timestep return the decoder NLL,
        # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
        output = th.where((t == 0), decoder_nll, kl)
        return {"output": output, "pred_xstart": out["pred_xstart"]}

    def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
        """
        Compute training losses for a single timestep.

        :param model: the model to evaluate loss on.
        :param x_start: the [N x C x ...] tensor of inputs.
        :param t: a batch of timestep indices.
        :param model_kwargs: if not None, a dict of extra keyword arguments to
            pass to the model. This can be used for conditioning.
        :param noise: if specified, the specific Gaussian noise to try to remove.
        :return: a dict with the key "loss" containing a tensor of shape [N].
                 Some mean or variance settings may also have other keys.
        """
        if model_kwargs is None:
            model_kwargs = {}
        if noise is None:
            noise = th.randn_like(x_start)
        x_t = self.q_sample(x_start, t, noise=noise)

        terms = {}

        if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
            terms["loss"] = self._vb_terms_bpd(
                model=model,
                x_start=x_start,
                x_t=x_t,
                t=t,
                clip_denoised=False,
                model_kwargs=model_kwargs,
            )["output"]
            if self.loss_type == LossType.RESCALED_KL:
                terms["loss"] *= self.num_timesteps
        elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
            model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)

            if self.model_var_type in [
                ModelVarType.LEARNED,
                ModelVarType.LEARNED_RANGE,
            ]:
                B, C = x_t.shape[:2]
                assert model_output.shape == (B, C * 2, *x_t.shape[2:])
                model_output, model_var_values = th.split(model_output, C, dim=1)
                # Learn the variance using the variational bound, but don't let
                # it affect our mean prediction.
                frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
                terms["vb"] = self._vb_terms_bpd(
                    model=lambda *args, r=frozen_out: r,
                    x_start=x_start,
                    x_t=x_t,
                    t=t,
                    clip_denoised=False,
                )["output"]
                if self.loss_type == LossType.RESCALED_MSE:
                    # Divide by 1000 for equivalence with initial implementation.
                    # Without a factor of 1/1000, the VB term hurts the MSE term.
                    terms["vb"] *= self.num_timesteps / 1000.0

            target = {
                ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
                    x_start=x_start, x_t=x_t, t=t
                )[0],
                ModelMeanType.START_X: x_start,
                ModelMeanType.EPSILON: noise,
            }[self.model_mean_type]
            assert model_output.shape == target.shape == x_start.shape
            terms["mse"] = mean_flat((target - model_output) ** 2)
            if "vb" in terms:
                terms["loss"] = terms["mse"] + terms["vb"]
            else:
                terms["loss"] = terms["mse"]
        else:
            raise NotImplementedError(self.loss_type)

        return terms

其中几个主要的函数总结如下:

这部分代码其实就是把流程,和上面的公式做实现

  • q_sample:实现的从x0到xt扩散过程;
  • q_posterior_mean_variance:实现的是后验分布的均值和方差的计算公式;
  • predict_start_from_noise:q_sample的逆过程,根据预测的噪音来生成;
  • p_mean_variance:根据预测的噪音来计算的均值和方差;
  • p_sample:单个去噪step;
  • p_sample_loop:整个去噪音过程,即生成过程。

5.损失函数定义

论文loss是每个step中,真实加入的噪声和训练网络预测的噪声差值最小化。openai开源实现代码是计算实际噪声loss分布和预测噪声loss的kl散度。

def normal_kl(mean1, logvar1, mean2, logvar2):
    """
    Compute the KL divergence between two gaussians.

    Shapes are automatically broadcasted, so batches can be compared to
    scalars, among other use cases.
    """
    tensor = None
    for obj in (mean1, logvar1, mean2, logvar2):
        if isinstance(obj, th.Tensor):
            tensor = obj
            break
    assert tensor is not None, "at least one argument must be a Tensor"

    # Force variances to be Tensors. Broadcasting helps convert scalars to
    # Tensors, but it does not work for th.exp().
    logvar1, logvar2 = [
        x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
        for x in (logvar1, logvar2)
    ]

    return 0.5 * (
        -1.0
        + logvar2
        - logvar1
        + th.exp(logvar1 - logvar2)
        + ((mean1 - mean2) ** 2) * th.exp(-logvar2)
    )

6.串接训练流程

def main():
    args = create_argparser().parse_args()

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model and diffusion...")
    model, diffusion = create_model_and_diffusion(
        **args_to_dict(args, model_and_diffusion_defaults().keys())
    )
    model.to(dist_util.dev())
    schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)

    logger.log("creating data loader...")
    data = load_data(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        image_size=args.image_size,
        class_cond=args.class_cond,
    )

    logger.log("training...")
    TrainLoop(
        model=model,
        diffusion=diffusion,
        data=data,
        batch_size=args.batch_size,
        microbatch=args.microbatch,
        lr=args.lr,
        ema_rate=args.ema_rate,
        log_interval=args.log_interval,
        save_interval=args.save_interval,
        resume_checkpoint=args.resume_checkpoint,
        use_fp16=args.use_fp16,
        fp16_scale_growth=args.fp16_scale_growth,
        schedule_sampler=schedule_sampler,
        weight_decay=args.weight_decay,
        lr_anneal_steps=args.lr_anneal_steps,
    ).run_loop()

小结

1.把DDIM模型做了实现层面的介绍

2.把具体实现代码和推导细节对应

3.代码学习是为了后面sd模型打基础

4.甚至是为了后续改模型架构,增加更多特征信息作铺垫

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/507200.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

jvm梳理

jvm是一个虚拟机&#xff0c;用于运行java代码&#xff0c;类的编译到运行主要为一下&#xff1a; 通过javac.exe编译&#xff0c;产生class文件&#xff0c;然后通过类加载器加入jvm&#xff1a; 类加载器&#xff1a; 引导加载器&#xff1a;使用c编写&#xff0c;负责java的…

【高项】项目绩效域,信息文档配置与变更,标准与规范管理(第4版教材第18-19,24章,项目规范知识)

文章目录 1、配置与变更管理1.1 信息文档1.2 配置管理1.3 变更管理 2、标准规范&#xff08;合同管理&#xff0c;知识产权&#xff09;2.1 合同管理2.2 知识产权和标准规范&#xff08;合同法&#xff0c;招投标法&#xff0c;著作权法&#xff0c;政府采购法&#xff09;2.3 …

力扣算题Day17

110.平衡二叉树(递归很难理解,思维很重要) 下面才是做二叉树的一种正确思维&#xff1a; copy他人运行代码&#xff1a; class TreeNode:def __init__(self, val0, leftNone, rightNone):self.val valself.left leftself.right right class Solution:def judgeDepth(self, …

自底向上分析概述

4-8自底向上的分析概述_哔哩哔哩_bilibili &#xff08;开始准备期末考试&#xff09;&#xff08;可菜&#xff09; 移入-规约分析&#xff1a; 每次归约的符号串称为“句柄”&#xff0c;一旦句柄在栈顶形成&#xff0c;我们立即将它规约&#xff0c;因此每一步规约都是最左…

[JAVA EE]创建Servlet——继承HttpServlet类笔记2

创建Servlet的方式之一&#xff1a;继承HttpServlet类&#xff08;经常使用&#xff09; 如果请求方式为get请求则调用doGet()方法; 如果请求方式为post请求则调用doPost()方法。 开发中通常不会在两个方法中写重复的代码&#xff0c;会造成代码冗余。 Request 一、获取请求…

[前端基础]websocket协议

(1)websocket websocket(简写为ws),是一种轻量化的协议,经过最开始的握手阶段以后,前后端之间允许自由地发送信息不受限制(建议发送json字符串).虽然理论上这个东西是属于协议内容,但是已经被疯狂封装得像框架一样了. websocket协议具有天然的优势处理前端多线程并发,并且只需…

Android---Glide的基本使用

目录 Glide 基本使用 Glide 进阶 Glide 是一个快速高效的 Android 图片加载库&#xff0c;可以自动加载网络、本地文件&#xff0c;app 资源中的图片&#xff0c;注重于平滑的滚动。 Glide 第一次加载一张图片后&#xff0c;就会自动帮我们把这张图片加入到内存中进行管理。…

Linux内核同步之RCU机制基础

Why RCU 1. 中断与抢占 当一个进程被时钟中断打断后&#xff0c;kernel运行tick中断处理程序&#xff08;一般是top half&#xff09;&#xff0c;中断处理程序运行结束后&#xff0c;有两种情况&#xff1a; 之前的进程获得CPU继续运行。 另一个进程获得了CPU开始运行&…

AI智慧安监:打电话/玩手机智能检测,构筑安全生产新防线

1、方案背景 在油库、加油站、化工厂等场景中&#xff0c;安全生产是首要的监管问题&#xff0c;因为有易燃物品的存放&#xff0c;打电话很容易引起火灾爆炸等安全事故&#xff0c;造成巨大的生命和财产损失。因此&#xff0c;对人员行为的监管是安全的关键&#xff0c;在一些…

计算机图形学 | 实验六:旋转立方体

计算机图形学 | 实验六&#xff1a;旋转立方体 计算机图形学 | 实验六&#xff1a;旋转立方体Z-缓冲GLM函数库PVM矩阵PVM矩阵的使用 华中科技大学《计算机图形学》课程 MOOC地址&#xff1a;计算机图形学&#xff08;HUST&#xff09; 计算机图形学 | 实验六&#xff1a;旋转…

怎么看待QA(软件测试)漏测bug?

先抛出我的2个观点&#xff1a; 1、漏测不一定是测试的锅。但当问题发生时&#xff0c;测试第一时间不要去拒绝推卸责任&#xff0c;而是要先去解决漏测问题。 2、漏测问题的及时处理很重要&#xff0c;但是避免再次漏测更重要。 为了将此问题阐述的更清楚&#xff0c;我将通过…

SSM框架学习-DI依赖注入方式实例

DI依赖注入&#xff1a;依赖注入&#xff08;Dependency Injection, DI&#xff09;是一种设计模式&#xff0c;用于将一个对象所需要的其他对象的引用或依赖关系从代码中解耦出来&#xff0c;将其交由某个第三方来管理&#xff0c;使得对象本身更加独立&#xff0c;便于测试和…

使用读写锁提高并发

我们想要的是&#xff1a;允许多个线程同时读&#xff0c;但只要有一个线程在写&#xff0c;其他线程就必须等待。 ReadWriteLock ReadWriteLock的作用&#xff1a; 只允许一个线程写入&#xff08;其他线程既不能写入也不能读取&#xff09;&#xff1b;没有写入时&#xf…

基于深度学习的三维重建网络PatchMatchNet(三):如何利用patchmatchnet完成自己场景的数据集制作与利用自己的数据完成三维重建工作

目录 1.如何使用本篇博客 1.1 patchmatchnet网络环境配置 1.2 colmap环境配置 2.如何利用colmap制作自己的三维重建数据集 2.1 采集数据 2.2 使用colmap计算位姿 2.3 转换位姿到MVS读取的格式 2.4 剔除离群图片 2.5 运用patchmatchnet进行三维重建 1.如何使用本篇博客 …

【MySQL】简单使用

数据库&#xff1a;文件&#xff0c;管理系统 类别&#xff1a;关系型&#xff0c;非关系型&#xff08;nosql&#xff09; C/S模式&#xff08;客户端服务器&#xff09; mysql登录 用户名&密码 默认管理员&#xff1a;root 登录&#xff1a;Linux管理员身份运行客户…

为什么二极管具有单向导通性

大家都知道二极管具有单向导通性&#xff0c;比如一个双极性的信号通过二极管后会变成一个单极性的信号。 为了弄清这个问题先来看一下二极管的构成。 在纯净的硅晶体中掺入五价元素&#xff0c;比如磷&#xff0c;就形成了N型半导体&#xff0c;掺入的五价元素多余的电子很容…

汉明码简单计算方法

正算 看一张图 其中标绿底色的为汉明码校验位&#xff0c;可以发现&#xff0c;这些位置的2进制里面只有一个1&#xff0c;其他位上都是0。 先说结论&#xff1a;校验位上的1在第几个位上&#xff0c;就会用来保证位置的2进制里面该位上为1的位置上的1的个数为偶数。 比如&…

11_Uboot启动流程_3

目录 run_main_loop函数详解 cli_loop函数详解 cmd_process函数详解 run_main_loop函数详解 uboot启动以后会进入3秒倒计时,如果在3秒倒计时结束之前按下按下回车键,那么就,会进入uboot的命令模式,如果倒计时结束以后都没有按下回车键,那么就会自动启动Linux内核,这个功能…

MySQ ---- 函数

函数 函数是指一段可以直接被另一段程序调用的程序或代码。MySQL 内置了很多函数&#xff0c;开发人员只需要调用使用即可。查询语句中已经使用过了一些聚合函数。下面还有些常用的函数需要掌握。 函数应用场景举例 函数的分类 ① 字符串函数 ② 数值函数 ③ 日期函数 ④ 流程…

chap和ppp认证配置+MGRE实验

题目要求 1.R2为ISP&#xff0c;其上只能配置IP地址 2.R1-R2之间为HDLC封装 3.R2-R3之间为ppp封装&#xff0c;pap认证&#xff0c;R2为主认证方 4.R2-R4之间为ppp封装&#xff0c;chap认证&#xff0c;R2为主认证方 5.R1,R2,R3构建MGRE环境&#xff0c;仅R1的IP地址固定 6.内…