java lambda表达式详解

news2024/11/15 4:05:10

一、Lambda初识

我们知道,在Java中,接口是不能实例化的,但是接口对象可以指向它的实现类对象。如果接口连实现对象都没有呢?那还可以使用匿名类的方式,如下:

public class JavaTest { 
   
    public static void main(String[] args) { 
   
        Fly fly = new Fly() { 
   
            @Override
            public void fly(String name) { 
   
                System.out.println(name + "飞行");
            }
        };
        fly.fly("张三");
    }
}

interface Fly{ 
   
    abstract void fly(String name);
}

复制

但是,使用匿名内部的方式,代码量其实并不是非常简洁,而为了使代码更加的简洁,Java引进了Lambda表达式的写法,通过更简单的语法,去实现这样功能,使用Lambda表达式简化的代码如下:

public class JavaTest { 
   
    public static void main(String[] args) { 
   
        Fly fly = name -> System.out.println(name + "飞行");
        fly.fly("张三");
    }
}

interface Fly{ 
   
    abstract void fly(String name);
}

复制

通过Lambda表达式完成了同样的效果,但是代码量却精简了非常对,这就是Lambda表达式的魅力。

二、 函数式接口

在学习Lambda表达式的语法之前,首先要知道什么是函数式接口, 只有一个待实现方法 的接口,就叫做函数式接口。

//接口中只有一个待实现的方法 fly,所以这是函数式接口
interface Fly{ 
   
     void fly(String name);
}
//接口中有两个待实现的方法 这是不是函数式接口
interface Run{ 
   
    void fastRun();
    void slowRun();
}
//接口中有两个方法,但其中一个是已经定义好的default方法,真正需要子类去实现的方法只有一个 这是函数式接口
interface Jump{ 
   
    void jump();
    default void highJump(){ 
   
        System.out.println("跳的更高");
    }
}

复制

可以在接口上加**@FunctionalInterface注解,去断言这个接口是函数式接口,如果这个接口不是函数式接口,编译就会提示错误。

为什么要知道什么是函数式接口呢?因为Lambda表达式去简化一个接口的匿名类实现方式,它只能对函数式接口起作用**。 这很容易理解,如果一个接口有多个待实现的方法,Lambda表达式就不能分辨出它现在是对接口中哪个方法进行实现。

三、Lambda表达式语法

Lambda表达式在Java语言中引入了一个操作符**“->”**,该操作符被称为Lambda操作符或箭头操作符。它将Lambda分为两个部分:

左侧:指定了Lambda表达式需要的所有参数 右侧:制定了Lambda体,即Lambda表达式要执行的功能。 像这样:

(parameters) -> expression
或
(parameters) ->{ statements; }

复制

Lambda表达式的除了->和Lambda体,其他的比如参数,小括号,中括号都是可以更加参数类型、方法体代码行数进行省略的。 以如下函数式接口的实现为例:

interface MathOperation { 
   
        int operation(int a, int b);
    }

    interface GreetingService { 
   
        void sayMessage(String message);
    }

    private int operate(int a, int b, MathOperation mathOperation){ 
   
        return mathOperation.operation(a, b);
    }
    
    interface NoParam{ 
   
        int returnOne();
    }

复制

以下是lambda表达式的重要特征:

  • 可选类型声明:Lambda表达式可以不用声明实现方法的参数类型,编译器可以统一识别参数值。
        // 类型声明
        MathOperation addition = (int a, int b) -> a + b;
        // 不用类型声明
        MathOperation subtraction = (a, b) -> a - b;

复制

  • 可选的参数圆括号:一个参数无需定义圆括号,但没有参数或者多个参数需要定义圆括号。
      // 不用括号
        GreetingService greetService1 = message ->
                System.out.println("Hello " + message);

        // 用括号
        GreetingService greetService2 = (message) ->
                System.out.println("Hello " + message);

复制

  • 可选的大括号:如果主体包含了一个语句,就不需要使用大括号。
     // 多条语句不可以省略大括号
        MathOperation multiplication = (int a, int b) -> { 
   
            int num = a+1;
            num = a + b;
            return a * b + num;
        };

        // 单条语句可以省略大括号
        MathOperation division = (int a, int b) -> a / b;

复制

  • 可选的返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定表达式返回了一个数值。
  // 多条语句的Lambda表达式如果有返回值,需要使用return
        MathOperation multiplication = (int a, int b) -> {
            int num = a+1;
            num = a + b;
            return a * b + num;
        };

        // 单条语句可以省略return
        MathOperation division = (int a, int b) -> a / b;

复制

四、Lambda表达式的使用范围

Lambda表达式并不只是单单的用来简化一个匿名类的创建,它还有更多的用法。

1、为变量赋值

上文中,对Lambda表达式的用法都是为变量赋值的写法,这样可以简化匿名内部类赋值的代码段,提高阅读效率。

MathOperation subtraction = (a, b) -> a - b;

复制

2、作为return结果

interface MathOperation { 
   
        int operation(int a, int b);
    }

    MathOperation getOperation(int a, int b){ 
   
        return (a1, b1) -> a+b;
    }

复制

3、作为数组元素

MathOperation math[] = { 
   
                (a,b) -> a+b,
                (a,b) -> a-b,
                (a,b) -> a*b
        };

复制

4、作为普通方法或者构造方法的参数

public static void main(String args[]){ 

Java8Tester java8Tester = new Java8Tester();
java8Tester.operate(1,2,((a, b) -> a*b));
}
private int operate(int a, int b, MathOperation mathOperation){ 

return mathOperation.operation(a, b);
}
interface MathOperation { 

int operation(int a, int b);
}

复制

五、Lambda表达式的作用域范围

Lambda表达式表达体内,可以访问表达体外的变量,但无法对其他变量进行修改操作。

六、Lambda表达式的引用写法

在学习Lambda的时候,还可能会发现一种比较奇怪的写法,例如下面的代码:

// 方法引用写法
GreetingService greetingService = System.out::println;
greetingService.sayMessage("hello world");

复制

这里出现了一个从来没见过的符号 :: ,这种写法就叫做方法的引用。 显然使用方法引用比普通的Lambda表达式又简洁了一些。

如果函数式接口的实现恰好可以通过调用一个方法来实现,那么我们可以使用方法引用。

public class Java8Tester { 

public static void main(String args[]){ 

// 静态方法引用--通过类名调用
GreetingService greetingService = Test::MyNameStatic;
greetingService.sayMessage("hello");
Test t = new Test();
//实例方法引用--通过实例调用
GreetingService greetingService2 = t::myName;
// 构造方法方法引用--无参数
Supplier<Test> supplier = Test::new;
System.out.println(supplier.get());
}
interface GreetingService { 

void sayMessage(String message);
}
}
class Test { 

// 静态方法
public static void MyNameStatic(String name) { 

System.out.println(name);
}
// 实例方法
public void myName(String name) { 

System.out.println(name);
}
// 无参构造方法
public Test() { 

}
}

复制

7、Lambda表达式的优缺点

优点:

  • 更少的代码行-lambda表达式的最大好处之一就是减少了代码量。我们知道,lambda表达式只能与功能接口一起使用。例如,Runnable 是一个接口,因此我们可以轻松地应用lambda表达式。
  • 通过将行为作为方法中的参数传递来支持顺序和并行执行-通过在Java 8中使用Stream API,将函数传递给collection方法。现在,集合的职责是以顺序或并行的方式处理元素。
  • 更高的效率-过使用Stream API和lambda表达式,可以在批量操作集合的情况下获得更高的效率(并行执行)。 此外,lambda表达式有助于实现集合的内部迭代,而不是外部迭代。

缺点

  • 运行效率-若不用并行计算,很多时候计算速度没有比传统的 for 循环快。(并行计算有时需要预热才显示出效率优势)
  • 很难调试-Lambda表达式很难打断点,对调式不友好。
  • 不容易看懂-若其他程序员没有学过 lambda 表达式,代码不容易让其他语言的程序员看懂(我学Lambda表达式的原因是看不懂同事写的Lambda表达式代码)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/506337.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

jenkins,gitlab,实时构建推送

首先jdk&#xff0c;jenkins安装好&#xff0c;新版jenkins不支持jdk8 然后安装环境maven&#xff0c;git 环境配置 插件安装 gitlab插件 Build Authorization Token Root插件 插件环境整好之后新建个任务 源码管理&#xff0c;填入仓库https地址&#xff0c;添加git…

大势智慧软硬件技术答疑第一期

1.重建大师生成的实景三维模型&#xff0c;模型周边的道路植物被压平了&#xff0c;怎么保留植物道路原有形状&#xff1f; 答&#xff1a;这个是单体化生成的地理实体场景&#xff0c;会把地物压平&#xff0c;可以用模方将单体化的模型加入到osgb中。 2.直接导入空三的话这个…

采用docker部署时kafka共享zookeeper的网络配置

采用docker部署kafka、zookeeper&#xff0c;一般的做法是创建一个docker网络&#xff0c;然后kafka、zookeeper都使用这个网络。问题是&#xff0c;我部署到生产环境的时候&#xff0c;这种做法被禁止了。原因是添加了这个docker网络以后&#xff0c;服务器就无法访问了。该服…

Es读写调优、深度分页

写入 ES支持四种对文档的数据写操作 create&#xff1a;如果在PUT数据的时候当前数据已经存在&#xff0c;则数据会被覆盖&#xff0c;如果在PUT的时候加上操作类型create&#xff0c;此时如果数据已存在则会返回失败&#xff0c;因为已经强制指定了操作类型为create&#xf…

Spring核心 AOP

1.什么是AOP&#xff1f; AOP&#xff08;Aspect Orient Programming&#xff09;&#xff0c;直译过来就是面向切面编程。AOP是一种编程思想&#xff0c;是面向对象编程&#xff08;OOP&#xff09;的一种补充。面向对象编程将程序抽象成各个层次的对象&#xff0c;而面向切面…

【笔试强训选择题】Day9.习题(错题)解析

作者简介&#xff1a;大家好&#xff0c;我是未央&#xff1b; 博客首页&#xff1a;未央.303 系列专栏&#xff1a;笔试强训选择题 每日一句&#xff1a;人的一生&#xff0c;可以有所作为的时机只有一次&#xff0c;那就是现在&#xff01;&#xff01;&#xff01; 文章目录…

open3d Image和numpy互转,PointCloud和numpy互转

目录 1. open3d.geometry.Image转numpy 2. numpy 转 open3d.geometry.Image 3. numpy转PointCloud 4. PointCloud转numpy 1. open3d.geometry.Image转numpy np_x np.asarray(x) # (h,w,3) import numpy as np import matplotlib.pyplot as plt import matplotlib.image…

鸿蒙Hi3861学习十-Huawei LiteOS-M(消息队列)

一、简介 消息队列&#xff0c;是一种常用于任务间通信的数据结构&#xff0c;实现了接收来自任务或中断的不固定长度的消息&#xff0c;并根据不同的接口选择传递消息是否存放在自己空间。任务能够从队列里面读取消息&#xff0c;当队列中的消息是空时&#xff0c;挂起读取任务…

EC6108V9/V9C-Hi3798MV100-当贝纯净桌面-卡刷固件包

EC6108V9&#xff0f;V9C-Hi3798MV100-当贝纯净桌面-卡刷固件包-内有教程 特点&#xff1a; 1、适用于对应型号的电视盒子刷机&#xff1b; 2、开放原厂固件屏蔽的市场安装和u盘安装apk&#xff1b; 3、修改dns&#xff0c;三网通用&#xff1b; 4、大量精简内置的没用的软…

C#学习笔记--实现一个可以重复权重并且能够自动排序的容器--MultiplySortedSet

目录 前言SortedSetC#自带类型自定义类SortedSet权值重复 需求自定义容器 -- MultiplySortedSet核心实现思路 MultiplySortedSet 使用C#自带类型自定义类 前言 最近需要在C#中实现一个功能 有一个容器&#xff0c;该容器能自动对里面的元素进行排序&#xff0c;类似C的优先队列…

fast中user_id如何显示user表中的名称_关联模型

问题&#xff1a;编辑框内的user_id显示的是nickname 列表里如何显示nickname或是username 解决方案如下&#xff1a; 需要更改3个地方&#xff0c;控制器&#xff0c;模型&#xff0c;js文件 1.控制器index list($where, $sort, $order, $offset, $limit) $this->build…

ES6D: 利用对称性进行高效的6D姿态检测

利用对称性进行高效的6D姿态检测 本文参考自CVPR2022的这篇文章&#xff1a;ES6D: A Computation Efficient and Symmetry-Aware 6D Pose Regression Framework Github链接为&#xff1a;https://github.com/GANWANSHUI/ES6D 介绍 在6D姿态检测中&#xff0c;一些具备对称性的…

米哈游的春招实习面经,问的很基础

米哈游的春招实习面经&#xff0c;主要考察了java操作系统mysql网络&#xff0c;这四个方面。 面试流程&#xff0c;共1小时&#xff0c;1min自我介绍&#xff0c;20min写题&#xff0c;剩下问题基础知识。 Java String&#xff0c;StringBuilder&#xff0c; StringBuffer区…

注意力模型

如果拿机器翻译来解释这个分心模型的Encoder-Decoder框架更好理解&#xff0c;比如输入的是英文句子&#xff1a;Tom chase Jerry&#xff0c;Encoder-Decoder框架逐步生成中文单词&#xff1a;“汤姆”&#xff0c;“追逐”&#xff0c;“杰瑞”。 在翻译“杰瑞”这个中文单词…

低代码/0代码(无代码)开发平台如何选型?这篇文章告诉你

随着数字化转型的加速&#xff0c;越来越多的企业开始寻求低代码或零代码开发平台来加速应用程序的开发和部署。选对合适的平台是至关重要的&#xff0c;因为这将决定企业能否在数字化转型中保持竞争优势。 市面上的低/零代码平台五花八门&#xff0c;在选型的时候需要考虑哪些…

搭建本地仓库源

一、如何搭建仓库源 之前讲了定制ISO的方法&#xff1a;使用chroot定制系统&#xff0c;但有时候我们想自定义的安装包不在上游的仓库源中&#xff0c;在我们本地应该怎么办呢&#xff1f;如果我们将deb包拷贝到iso目录再安装有点过于麻烦了&#xff0c;而且还可能需要手动处理…

Linux 常见命令与常见问题解决思路

Linux 常见命令 Linux 基础命令目录相关查看文件&#xff08;日志&#xff09;查看普通的文件查看压缩的文件 解压压缩Linux 系统调优topvmstatpidstatps vi/vim 编辑文件查找文件属性相关定时任务scp 复制文件和目录awk 分隔cutsort 与 uniq常见问题处理思路CPU 高系统平均负载…

数组存储与指针学习笔记(一)数据类型与存储、数据对齐、数据移植、typedef

数据类型与存储 一、数据类型与存储1.1 大端模式与小端模式1.2 有符号数和无符号数1.3 数据溢出1.4 数据类型转换 二、数据对齐2.1 为什么非要地址对齐2.2 结构体对齐2.3 联合体对齐 三、数据的可移植性四、Linux内核中的size_t类型五、typedef5.1 typedef的基本用法5.2 typede…

python操作集合

# 集合 l{1,2,1} print(l) sset(range(5)) print(s)# 判断in 或 not in print(5 not in l) # 集合元素新增操作 l.add(4) l.update(1,3,6) print(l) l.update((1,3,5)) l.update([4,4,6]) # 删除集合元素 l.remove(2) l.discard(2) # 无目的的删除 自己不带参数 l.pop() l.cl…

【跟着陈七一起学C语言】今天总结:C预处理器和C库

友情链接&#xff1a;专栏地址 知识总结顺序参考C Primer Plus&#xff08;第六版&#xff09;和谭浩强老师的C程序设计&#xff08;第五版&#xff09;等&#xff0c;内容以书中为标准&#xff0c;同时参考其它各类书籍以及优质文章&#xff0c;以至减少知识点上的错误&#x…