【论文阅读】Online multi-sensor calibration based on moving object tracking

news2024/11/16 6:00:10

目录

  • Online multi-sensor calibration based on moving object tracking
    • Abstract
    • 1. Introduction
    • 2. Proposed Method
      • 2.1 Object Detection
      • 2.2 Tracking of moving objects
      • 2.3 Track-to-track association
      • 2.4 Decalibration(解关联) detection
      • 2.5 Graph-based extrinsic calibration
    • 3. Experimental results
      • 3.1 Experimental setup
      • 3.2 Results
      • 3.3 Comparison with odometry-based calibration
    • 4. Conclusion
    • Comprehension
    • Words

Online multi-sensor calibration based on moving object tracking

Abstract

propose an online calibration method based on detection and tracking of moving objects.

resource inexpensive solution

The methods consists of a calibration-agnostic track to track association, computationally lightweight decalibration detection, and a graph-based rotation calibration.

1. Introduction

DATMO: detection and tracking of moving objects

sensor calibration consists of finding the intrinsic, extrinsic and temporal parameters.

the online approaches use information from the environment during the regular system operation, thus enabling long term robustness of the autonomous system.

Online calibration methods can be divided into feature-based and motion-based methods.

In this paper, we leverage current state of the art in DATMO and propose an online calibration methods based on it. Our motivation is to enable decalibration detection and recalibration based on the information which is already present in an autonomous system pipeline without adding significant computational overhead.

Our method provides a full pipeline which includes:

  1. DATMO algorithm for each sensor modality
  2. track-to-track association based on a calibration invariant measure
  3. efficient decalibration detection
  4. a graph-based calibration handling multiple heterogeneous sensors simultaneously

Refer to Figure1.

在这里插入图片描述

Our method only estimates rotational component of the extrinsic calibration.

Our method assumes that translational calibration is obtained using either target-based or sensor-specific methods.

2. Proposed Method

2.1 Object Detection

radars provide a list of detected objects consisting of the following measured information: range, azimuth angle, range-rate, and radar corrs-section(RCS). clusters of radars

Lidar’s and camera’s raw data… use the MEGVII network based on sparse 3D convolution, which is currently the best performing method for object detection on the nuScenes challenge.

for the object detection from images, use CenterNet, but velocity information is not provided.

use the network weights trained on the KITTI dataset and determined the range scale factor by comparing CenterNet detections to the MEGVII detections.

2.2 Tracking of moving objects

associate them between different time frames and provide estimates of their states, which are later used as inputs for subsequent steps.

2.3 Track-to-track association

observe 2 criteria for each track pair candidates through their common history:

  1. mean of the velocity norm difference
  2. mean of the position norm difference

The track pair has to satisfy both criteria and not surpass predefined thresholds.

time-varying SE(3) transform

2.4 Decalibration(解关联) detection

propose a computationally inexpensive decalibration detection methods, which is based on the data already present in the system.

form a 3*3 data matrix…

When the criterion (12) surpasses a predefined threshold, the system proceeds to the complete graph-based sensor calibration. The magnitude of the minimal decalibration that can be detected is limited by the predefined threshold and the horizon defined with the Tw. Longer horizon enables detection of smaller calibraiton changes, but with slower convergence.

2.5 Graph-based extrinsic calibration

graph-based optimization

to ensure and speed up the convergence, we use the results of the previous step as an initialization.

one sensor is chosen as an anchor and aligned with the Fe for convenience. We then seasrch for the poses of other sensors with respect to the anchor sensor by minimizing the following criterion(13)(14)

total least squares approache

if a sensor does not have a direct link with the anchor sensor, obtain (i,j)R by multiplying the corresponding series of rotation matrices to obtain the final rotation between the i-th and j-th sensor. This approach enables the estimation of all parameters with a single optimization, while ensuring consistency between sensor transforms.

3. Experimental results

real world data-> nuScenes dataset

3.1 Experimental setup

1000 scenes that are 20s long

a roof-mounted 3D lidar, 5 radars, 6 cameras. But focus only on the top lidar, front radar and front camera which all share a common FOV.

speed of ego vehicle: stationary at first 5s; 40km/h after.

17 moving vechicles

8 stationary vehicles in the detectable area for all the sensors.

3.2 Results

In comparison to the camera, lidar provided significantly more detections with frequent false positives(误报) which we successfully filtered by setting a threshold on their detection scores.

MEGVII network detects and classifies the same object as both car and truck…

the radar provide many false positives and multiple detections of the same vehicles.

RCS is not a reliable measure for vehicle classification…

the success rate for each sensor pair was as follows:

  • lidar-radar 93%

  • lidar-camera 94%

  • radar-camera 94%

Average time for 2 tracks is 1.5s for every sensor combination. decalibration did not lead to any noticeable difference in results.

criterion for each sensor pair is below 1° throughout the scene.

artificial decalibration of 3° in the yaw angle…

We can notice a significant increase in the criterion for the sensor pairs involving the camera, while the criterion for lidar-radar remained the same.

able to assess which sensor change its orientation by simply comparing the sensor-pairwise criteria.

3.3 Comparison with odometry-based calibration

tested SRRG method in [36]

4. Conclusion

  1. proposed an online multi=sensor calibration method based on detection and tracking of moving objects.
  2. on a moving platform without relying on a known target; does not assume a constant and known sensor calibration.
  3. proposed track to track association…
  4. graph based optimization

limited to rotation calibration only. Nevertheless, it was able to estimate rotation parameters with an approximate error of 0.2◦ from a 20 s long scene.

Comprehension

目标关联使用位置和速度的相关性。我们之前做过后融合部分,根据目标在84坐标系的位置进行关联,这个方法要人为设置一个门限,关联后,就找到了匹配的几个点,然后就是3d-2d转换。
declibration部分,意思是开始关联上了,一路记录关联,当解关联的时候就开始利用关联的数据做标定,解关联可能是遮挡或者目标出了范围,解关联开始出发计算calibration。可能是想积累更多的匹配数据,理论上数据在FOV分布越均匀,标定精度越高。

Words

WordDefinitionphonetic symbol
pipeline管道
ego-motion自我情感
rotational旋转的
heterogeneous异质的
leverage杠杆作用v. n.
exteroceptive外感
stationary稳定的
thrust推力 v. n.
FOVField of View
degradation降解
mutually相互
substantial重大的
association组合
conservative保守
compromise妥协,折中
loose松动的
trivial琐碎的,细小的
discrete离散的
accommodate容纳
disturbancen. 干扰,扰乱,骚扰
coincide重合
convergence收敛
magnitude大小,震级,量级
paradigm范例
isotropic各向同性
parentheses括号
Nevertheless尽管如此

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/504419.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

花菁染料CY5.5标记活性脂 Cy5.5-NHS

Cy5.5 NHS ester用于染色蛋白质、标记DNA、标记细胞表面抗原、标记抗体和其他生物分子。Cy5.5 NHS ester还可以用于分子影像学,可以追踪细胞内的变化。它还可以用于荧光免疫检测,以检测细胞表面抗原和抗体。 产品名称:五甲川花菁染料CY5.5标记…

OpenGL 4.0的Tessellation Shader(细分曲面着色器)

细分曲面着色器(Tessellation Shader)处于顶点着色器阶段的下一个阶段,我们可以看以下链接的OpenGL渲染流水线的图:Rendering Pipeline Overview。它是由ATI在2001年率先设计出来的。 目录 细分曲面着色器细分曲面Patch细分曲面控…

手把手实现项目中自定义动态数据源?

手把手实现项目中自定义动态数据源? 第一步:创建项目,添加POM依赖第二步:添加application.yml配置文件第三步:自定义注解指定使用哪个数据源第四步:创建DynamicDataSourceContextHolder工具类,存…

LeetCode:347. 前 K 个高频元素

🍎道阻且长,行则将至。🍓 🌻算法,不如说它是一种思考方式🍀 算法专栏: 👉🏻123 题解目录 一、🌱[347. 前 K 个高频元素](https://leetcode.cn/problems/bina…

安全防线再升级 | 中睿天下全流量安全分析系统重磅回归

随着信息化的加速,企业网络日趋完善。企业数字化的加速,让越来越多的关键业务运行在计算机网络基础之上,越来越多的重要信息通过网络传送,企业网络面临日益严重的安全威胁,这些安全威胁以窃取信息和收集情报为主&#…

基于docker安装MySQL

为了更好的管理,打算把MySQL、redis等服务放在虚拟机中统一部署,这样不会因为这些服务的问题影响到系统本身。前段时间正好在看docker相关的内容,打算在虚拟机中通过docker来使用MySQL等服务。 这次先记录安装MySQL的过程。 docker安装 首先…

超越 Nginx!号称下一代 Web 服务器,用起来够优雅!

Nginx是一款非常流行的Web服务器,在Github上已有16KStar,我们经常用它来做静态资源托管或反向代理。最近发现了一款全新的Web服务器Caddy,Star数超越Nginx,标星38KStar。试用了一下Caddy,发现它使用起来比Nginx优雅多了…

掌握这五个核心步骤,让你的方案完美无缺

写策划方案怎么来写,可能会是刚入行策划人的难点,策划方案其实就是一份营销计划,一份完整的策划能让策划人看清自己、认清竞争对手,形成对市场的整体认知。 一般大的营销策划方案里面会用到STP、SWOT和4P等模型,模型本…

【Java多线程编程】创建线程的基本方式

大家好,我是一只爱打拳的程序猿。今天给大家带来的内容是 Java 创建线程的基本方式。 多线程的基本创建方式: 继承Thread类实现Runnable接口匿名内部类使用lambda表达式 目录 1. 继承Thread类 1.1 Thread类启动线程 2. 实现Runnable接口 2.1 创建Thread类实例…

while和until的使用方法(还有一些小实验:计算器、猜价格游戏、购物)

while和until的使用方法 一、while用法二、Until循环语句三、猜价格小实验四、计算器实验六、购物实验 一、while用法 for循环语句非常适用于列表对象无规律,且列表来源以固定(如某个列表文件)的场合。而对于要求控制循环次数,操…

C++学习day--06 向计算机输入数据

1、输入 当缓冲区为空时&#xff0c;程序才会暂停&#xff0c;让用户输入数据。 输入回车后&#xff0c;数据全部送到输入缓冲区。 #include <iostream> #include <Windows.h> int main( void ){ char girlType; int salary; float height; std::cout &l…

记录--极致舒适的Vue页面保活方案

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 为了让页面保活更加稳定&#xff0c;你们是怎么做的&#xff1f; 我用一行配置实现了 Vue页面保活是指在用户离开当前页面后&#xff0c;可以在返回时恢复上一次浏览页面的状态。这种技术可以让用户享…

shell脚本4函数

文章目录 shell脚本函数1 函数概述2 定义2.1 形式2.2 使用原则2.3 函数传参2.4 函数变量的作用范围 3 递归3.1 阶乘 4 函数库5 实验5.1 阶乘5.2 递归目录5.3 调用函数库 shell脚本函数 1 函数概述 1、将命令序列按格式写在一起 2、可方便重复使用命令序列 使用函数可以避免代码…

FS4067升压充电8.4V锂电池充电IC电流3A

FS4067升压型5V升压充电8.4V两串锂电池充电IC&#xff0c;工作电压范围于 2.7V 到 6.5V 的 PFM 升压型两节锂电池充电控制集成电路。 FS4067采用恒流和恒压模式对电池进行充电管理&#xff0c;内部集成有基准电压源&#xff0c; 电感电流检测单元&#xff0c;电池电压检测电路和…

【原创】强烈推荐三个可视化模块,绘制的图表真的很酷炫!!

Matplotlib是Python编程语言中最受欢迎的绘图库之一。它提供了一套面向对象的API&#xff0c;可将图表嵌入到使用通用GUI工具包&#xff08;如Tkinter、wxPython、Qt或GTK&#xff09;的应用程序中。Matplotlib还常用于创建静态、动画和交互式的Python数据可视化。它能够绘制各…

【Unity】在Unity下使用websocket的一些经验

首先&#xff0c;先上大家都知道的简介&#xff0c;这一版是我认为比较清晰的。。。虽然在度娘的教导和知乎的教导下&#xff0c;总算认识了websocket&#xff0c;但这个过程比较艰辛&#xff0c;给大家发出来看一下&#xff1a; --------------------------------------------…

精准测试之过程与实践 | 京东云技术团队

作者&#xff1a;京东工业 宛煜昕 一、怎样的技术 •百度百科&#xff1a; 精准测试是一套计算机测试辅助分析系统。 精准测试的核心组件包含的软件测试示波器、用例和代码的双向追溯、智能回归测试用例选取、覆盖率分析、缺陷定位、测试用例聚类分析、测试用例自动生成系统…

苹果(ios)家庭APP广告推送,照片,相册,日历消息推送,【iMessage苹果推】,【苹果家庭推群发】,【imessage相册推送】

解决方案 若是你完全担任苹果的这个默许功效&#xff0c;那就不必要去编削任何代码。 如果&#xff0c;你原本就比较细心&#xff0c;曾经配置了modalPresentationStyle的值&#xff0c;那你也不会有这个影响。 对于想要找回本来默认交互的同学&#xff0c;直接设置以下便可&am…

携手共赢 HashData亮相华为合作伙伴大会

5月8日-9日&#xff0c;以“因聚而生 众志有为”为主题的“华为中国合作伙伴大会2023”在深圳国际会展中心举办。 HashData作为国内云原生数据仓库的代表企业&#xff0c;也是华为重要的生态合作伙伴。在本次大会上&#xff0c;HashData展示了云数仓领域最新前沿技术以及联合…

Java经典笔试题—day04

Java经典笔试题—day04 &#x1f50e;选择题&#x1f50e;编程题&#x1f95d;计算糖果&#x1f95d;进制转换 &#x1f50e;结尾 &#x1f50e;选择题 (1)下列与队列结构有关联的是&#xff08;&#xff09; A. 函数的递归调用 B. 数组元素的引用 C. 多重循环的执行 D. 先到…