挠性航天器姿态机动动力学模型及PD鲁棒控制

news2024/12/24 8:56:19

挠性航天器姿态机动动力学模型及PD鲁棒控制

  • 1挠性航天器姿态机动动力学模型
  • 2挠性航天器姿态机动PD鲁棒控制
    • 2.1 动力学模型及PD控制律
    • 2.2仿真模型
    • 2.3 控制程序
    • 2.4 被控对象程序
    • 2.5 绘图程序
    • 2.6 结果

1挠性航天器姿态机动动力学模型

在这里插入图片描述
在这里插入图片描述

2挠性航天器姿态机动PD鲁棒控制

2.1 动力学模型及PD控制律

在这里插入图片描述

2.2仿真模型

在这里插入图片描述

2.3 控制程序

function [sys,x0,str,ts,simStateCompliance] = chap7_1ctrl(t,x,u,flag)
%SFUNTMPL General MATLAB S-Function Template
%   With MATLAB S-functions, you can define you own ordinary differential
%   equations (ODEs), discrete system equations, and/or just about
%   any type of algorithm to be used within a Simulink block diagram.
%
%   The general form of an MATLAB S-function syntax is:
%       [SYS,X0,STR,TS,SIMSTATECOMPLIANCE] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
%   What is returned by SFUNC at a given point in time, T, depends on the
%   value of the FLAG, the current state vector, X, and the current
%   input vector, U.
%
%   FLAG   RESULT             DESCRIPTION
%   -----  ------             --------------------------------------------
%   0      [SIZES,X0,STR,TS]  Initialization, return system sizes in SYS,
%                             initial state in X0, state ordering strings
%                             in STR, and sample times in TS.
%   1      DX                 Return continuous state derivatives in SYS.
%   2      DS                 Update discrete states SYS = X(n+1)
%   3      Y                  Return outputs in SYS.
%   4      TNEXT              Return next time hit for variable step sample
%                             time in SYS.
%   5                         Reserved for future (root finding).
%   9      []                 Termination, perform any cleanup SYS=[].
%
%
%   The state vectors, X and X0 consists of continuous states followed
%   by discrete states.
%
%   Optional parameters, P1,...,Pn can be provided to the S-function and
%   used during any FLAG operation.
%
%   When SFUNC is called with FLAG = 0, the following information
%   should be returned:
%
%      SYS(1) = Number of continuous states.
%      SYS(2) = Number of discrete states.
%      SYS(3) = Number of outputs.
%      SYS(4) = Number of inputs.
%               Any of the first four elements in SYS can be specified
%               as -1 indicating that they are dynamically sized. The
%               actual length for all other flags will be equal to the
%               length of the input, U.
%      SYS(5) = Reserved for root finding. Must be zero.
%      SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
%               has direct feedthrough if U is used during the FLAG=3
%               call. Setting this to 0 is akin to making a promise that
%               U will not be used during FLAG=3. If you break the promise
%               then unpredictable results will occur.
%      SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
%      X0     = Initial state conditions or [] if no states.
%
%      STR    = State ordering strings which is generally specified as [].
%
%      TS     = An m-by-2 matrix containing the sample time
%               (period, offset) information. Where m = number of sample
%               times. The ordering of the sample times must be:
%
%               TS = [0      0,      : Continuous sample time.
%                     0      1,      : Continuous, but fixed in minor step
%                                      sample time.
%                     PERIOD OFFSET, : Discrete sample time where
%                                      PERIOD > 0 & OFFSET < PERIOD.
%                     -2     0];     : Variable step discrete sample time
%                                      where FLAG=4 is used to get time of
%                                      next hit.
%
%               There can be more than one sample time providing
%               they are ordered such that they are monotonically
%               increasing. Only the needed sample times should be
%               specified in TS. When specifying more than one
%               sample time, you must check for sample hits explicitly by
%               seeing if
%                  abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
%               is within a specified tolerance, generally 1e-8. This
%               tolerance is dependent upon your model's sampling times
%               and simulation time.
%
%               You can also specify that the sample time of the S-function
%               is inherited from the driving block. For functions which
%               change during minor steps, this is done by
%               specifying SYS(7) = 1 and TS = [-1 0]. For functions which
%               are held during minor steps, this is done by specifying
%               SYS(7) = 1 and TS = [-1 1].
%
%      SIMSTATECOMPLIANCE = Specifices how to handle this block when saving and
%                           restoring the complete simulation state of the
%                           model. The allowed values are: 'DefaultSimState',
%                           'HasNoSimState' or 'DisallowSimState'. If this value
%                           is not speficified, then the block's compliance with
%                           simState feature is set to 'UknownSimState'.


%   Copyright 1990-2010 The MathWorks, Inc.
%   $Revision: 1.18.2.5 $

%
% The following outlines the general structure of an S-function.
%
switch flag,

  %%%%%%%%%%%%%%%%%%
  % Initialization %
  %%%%%%%%%%%%%%%%%%
  case 0,
    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;

  %%%%%%%%%%%%%%%
  % Derivatives %
  %%%%%%%%%%%%%%%
  case 1,
    %sys=mdlDerivatives(t,x,u);
    sys=[];

  %%%%%%%%%%
  % Update %
  %%%%%%%%%%
  case 2,
    %sys=mdlUpdate(t,x,u);
    sys=[];
  %%%%%%%%%%%
  % Outputs %
  %%%%%%%%%%%
  case 3,
    sys=mdlOutputs(t,x,u);

  %%%%%%%%%%%%%%%%%%%%%%%
  % GetTimeOfNextVarHit %
  %%%%%%%%%%%%%%%%%%%%%%%
  case 4,
    %sys=mdlGetTimeOfNextVarHit(t,x,u);
    sys=[];
  %%%%%%%%%%%%%
  % Terminate %
  %%%%%%%%%%%%%
  case 9,
    %sys=mdlTerminate(t,x,u);
    sys=[];
  %%%%%%%%%%%%%%%%%%%%
  % Unexpected flags %
  %%%%%%%%%%%%%%%%%%%%
  otherwise
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));

end

% end sfuntmpl

%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes

%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded.  This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
sizes = simsizes;

sizes.NumContStates  = 0;
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 1;
sizes.NumInputs      = 7;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;   % at least one sample time is needed

sys = simsizes(sizes);

%
% initialize the initial conditions
%
x0  = [];

%
% str is always an empty matrix
%
str = [];

%
% initialize the array of sample times
%
ts  = [0 0];

% Specify the block simStateCompliance. The allowed values are:
%    'UnknownSimState', < The default setting; warn and assume DefaultSimState
%    'DefaultSimState', < Same sim state as a built-in block
%    'HasNoSimState',   < No sim state
%    'DisallowSimState' < Error out when saving or restoring the model sim state
simStateCompliance = 'UnknownSimState';

% end mdlInitializeSizes

%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
%function sys=mdlDerivatives(t,x,u)

%sys = [];

% end mdlDerivatives


%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(t,x,u)
thd=u(1);
th=u(2);
q1=u(3);
q2=u(4);
dth=u(5);
dq1=u(6);
dq2=u(7);
q=[q1 q2]';
dq=[dq1 dq2]';
e=th-thd;
kp=100;
kd=1000;
xite=4.0;
xite=0;
ut=-kp*e-kd*dth-xite*sign(dth);
sys = ut;

% end mdlOutputs

%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block.  Note that the result is
% absolute time.  Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================


2.4 被控对象程序

function [sys,x0,str,ts,simStateCompliance] = chap7_1plant(t,x,u,flag)
switch flag,
  case 0,
    [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;
  case 1,
    sys=mdlDerivatives(t,x,u);
  case 3,
    sys=mdlOutputs(t,x,u);
  case {2,4,9}
    sys=[];
  otherwise
    DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));

end

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates  = 6;
sizes.NumDiscStates  = 0;
sizes.NumOutputs     = 6;
sizes.NumInputs      = 1;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;   % at least one sample time is needed

sys = simsizes(sizes);

x0  = [0 0 0 0 0 0];
str = [];
ts  = [0 0];

% Specify the block simStateCompliance. The allowed values are:
%    'UnknownSimState', < The default setting; warn and assume DefaultSimState
%    'DefaultSimState', < Same sim state as a built-in block
%    'HasNoSimState',   < No sim state
%    'DisallowSimState' < Error out when saving or restoring the model sim state
simStateCompliance = 'UnknownSimState';

function sys=mdlDerivatives(t,x,u)
J=3250;
F1=54;
F2=6;
w1=1.2;w2=3.4;
Ks1=0.01;Ks2=0.01;

M=[J F1 F2;F1 1 0;F2 0 1];
N=[0 0 0;0 2*Ks1*w1 0;0 0 2*Ks2*w2];
K=[0 0 0;0 w1^2 0;0 0 w2^2];
B=[1 0 0]';
dt=0*3*sin(t);
ut=u(1);

x1=[x(1) x(2) x(3)]';%th q1 q2
x2=[x(4) x(5) x(6)]';%dth dq1 dq2
dx1=x2;
dx2=inv(M)*(-N*x2-K*x1+B*(ut-dt));
sys(1)=dx1(1);
sys(2)=dx1(2);
sys(3)=dx1(3);
sys(4)=dx2(1);
sys(5)=dx2(2);
sys(6)=dx2(3);


function sys=mdlOutputs(t,x,u)
sys(1)=x(1);%th
sys(2)=x(2);%q1
sys(3)=x(3);%q2
sys(4)=x(4);%sth
sys(5)=x(5);%dq1
sys(6)=x(6);%dq2

2.5 绘图程序


close all;

figure(1);
subplot(211);
plot(t,x(:,1),'r',t,x(:,2),'b','linewidth',2);
xlabel('time(s)');ylabel('angle tracking');
legend('ideal angle','practical angle');
subplot(212);
plot(t,x(:,5),'b','linewidth',2);
xlabel('time(s)');ylabel('practical angle speed');

figure(2);
subplot(211);
plot(t,x(:,3),'r','linewidth',2);
xlabel('time(s)');ylabel('Mode 1');
subplot(212);
plot(t,x(:,4),'b','linewidth',2);
xlabel('time(s)');ylabel('Mode 2');

figure(3);
subplot(211);
plot(t,x(:,6),'r','linewidth',2);
xlabel('time(s)');ylabel('speed of Mode 1');
subplot(212);
plot(t,x(:,7),'b','linewidth',2);
xlabel('time(s)');ylabel('speed of Mode 2');

figure(4);
plot(t,Th(:,1),'r','linewidth',2);
xlabel('time(s)');ylabel('Th');

2.6 结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/503215.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【NLP开发】Python实现聊天机器人(ChatterBot,集成web服务)

&#x1f37a;NLP开发系列相关文章编写如下&#x1f37a;&#xff1a; &#x1f388;【NLP开发】Python实现词云图&#x1f388;&#x1f388;【NLP开发】Python实现图片文字识别&#x1f388;&#x1f388;【NLP开发】Python实现中文、英文分词&#x1f388;&#x1f388;【N…

澳大利亚兔灾和——栈?

一.背景 1859年&#xff0c;当一位叫托马斯奥斯汀的农民收到英国老家送来的24只野兔并将它们放归农场的时候&#xff0c;他绝对意想不到&#xff0c;这些看似人畜无害的小兔子&#xff0c;竟为古老的澳洲大陆带来一场巨大的生态破坏。到20世纪初&#xff0c;澳大利亚的兔子数量…

操作系统内存管理(上)——内存管理基础

一、内存的基本知识 1.什么是内存&#xff1f;有什么作用&#xff1f; 内存可存放数据。程序执行前先放到内存才能被CPU处理——缓和CPU和硬盘之间的速度矛盾。 给内存的存储单元编址。如果计算机按字节编址&#xff0c;则每个存储单元大小为1字节。即1B8b&#xff08;8个二进…

智能医院导航导诊系统,门诊地图导航怎么做?

现在很多医院都是综合化大型医院&#xff0c;有很多的科室&#xff0c;院区面积也逐渐扩大&#xff0c;一方面给病患提供了更为全面的医疗资源&#xff0c;另一方面&#xff0c;医院复杂的环境也给病患寻医问诊带来了一定的困扰。电子地图作为大家最喜闻乐见的高效应用形式&…

Python的socket模块及示例

13.2 socket模块 socket由一些对象组成&#xff0c;这些对象提供网络应用程序的跨平台标准。 13.2.1 认识socket模块 socket又称“套接字”&#xff0c;应用程序通常通过“套接字”向网络发出请求或应答网络请求&#xff0c;使主机间或一台计算机上的进程间可以通信。sock…

Android 路由框架ARouter源码解析

作者&#xff1a;小马快跑 我们知道在使用ARouter时&#xff0c;需要在build.config里配置&#xff1a; annotationProcessor com.alibaba:arouter-compiler:1.2.2并且知道annotationProcessor用来声明注解解析器&#xff0c;arouter-compiler用来解析ARouter中的各个注解并自…

代码管理记录(一): 码云Gitee代码提交和维护

文章目录 Gitee介绍登录地址代码提交 Gitee介绍 Gitee 是一个类似于GitHub的代码托管平台&#xff0c;是中国的开源社区和开发者社区。它为开发者提供了基于Git的代码托管、协作、部署、代码质量检测、漏洞扫描、容器镜像等服务&#xff0c;同时也提供了一系列的个人资料和社交…

gitlab使用docker简单快速部署

文章目录 前言一、下载gitlab镜像二、安装步骤1.创建docker-compose文件2. 启动及登陆 三、配置页面总结 前言 GitLab 是一个用于仓库管理系统的开源项目&#xff0c;使用Git作为代码管理工具&#xff0c;并在此基础上搭建起来的web服务。本文主要用来记录如何使用docker快速搭…

c#笔记-类成员

声明类 类可以使用帮助你管理一组相互依赖的数据&#xff0c;来完成某些职责。 类使用class关键字定义&#xff0c;并且必须在所有顶级语句之下。 类的成员只能有声明语句&#xff0c;不能有执行语句。 class Player1 {int Hp;int MaxHp;int Atk;int Def;int Overflow(){if (…

七大排序算法一文通(易懂图解+优化代码)

目录 1.直接插入排序 2.希尔排序 3.选择排序 4.堆排序 5.冒泡排序 6.快速排序 6.1 递归实现——Hoare版 6.2 递归实现——挖坑法 6.3 非递归实现 6.4 优化 7.归并排序 7.1 归并排序——递归实现 7.2 归并排序——非递归实现 8.复杂度以及稳定性 1.直接插入排序 …

一列数到中位数的总距离最小

一列数到中位数的总距离最小 3554.二进制&#xff08;二进制数的加减法-转化为十进制运算再将结果转回二进制3565.完美矩阵1824.钻石收藏家&#xff08;经典双指针&#xff09; 3554.二进制&#xff08;二进制数的加减法-转化为十进制运算再将结果转回二进制 输入样例&#xff…

i春秋 Misc Web 爆破-1

打开链接是PHP源码 代码审计&#xff1a; include "flag.php"; 表示文件中包含flag.php文件&#xff0c;即根目录下存在flag.php $a $_REQUEST[hello]; 命名一个变量a来接收超全局变量$_REQUEST&#xff08;接收表单’hello’数据&#xff0c;请求一个为hello的参…

研发效能系列 - 质量与速度能否兼得?

作者&#xff1a;冬哥 引言 我们的时间&#xff0c;应该是用于提高软件质量&#xff0c;还是专注在发布更有价值的功能&#xff1f;这貌似是软件研发中永恒的话题。 到底什么是质量&#xff1f;质量有什么特质&#xff1f; 质量与速度是什么关系&#xff0c;两者是一个硬币的…

spring.factories 的作用是什么

spring.factories 文件用于在 Spring Boot 项目中配置自动配置项。它包含了一系列 key-value 对,key 是自动配置类的全限定名,value 是这些配置类对应的条件类。Spring Boot 会在启动时扫描 classpath 下的 META-INF/spring.factories 文件,并加载其中定义的自动配置类。这些自…

[IAR][CC2642R1] IDE安装和环境搭建,CC2642的环境配置

文章目录 一、IAR安装&#xff08;1&#xff09;压缩包下载&#xff08;2&#xff09;IAR安装(3) 注册(4) 补丁 二、在IAR中使用CC2642&#xff08;0&#xff09;打开IAR&#xff0c;配置环境。&#xff08;1&#xff09;例程位置&#xff08;2&#xff09;打开例程&#xff08…

4.Redis10大数据类型

Redis10大数据类型 Which 101.String&#xff08;字符串&#xff09;2.List&#xff08;列表&#xff09;3.hash &#xff08;哈希&#xff09;4.Set&#xff08;集合&#xff09;5.zset(sorted set&#xff1a;有序集合)6.Redis GEO &#xff08;地理空间&#xff09;7.HyperL…

金融贷款行业怎么找客户,运营商数据了解过没?

现如今随着信息社会发展的来临&#xff0c;销售市场呈碎片化发展趋向&#xff0c;各个行业为寻找用户&#xff0c;根据网上广告投放线下推广做活动&#xff0c;但效果微乎其微。拓客越来越难&#xff0c;且成本费也越来越高&#xff0c;成为很多公司的烦恼之处。 从被动获取客…

K8S基础理论,核心组件,数据流向详解

目录 第一章.k8s概述 1.1.什么是云原生 1.2.什么是K8S 1.3.K8S的优势 1.4.K8S的功能 1.5.K8S 的特性&#xff1a; 1.6.Kubernetes 集群架构与组件 第二章.K8S的核心组件 2.1.Master 组件 2.2.配置存储中心 2.3.Node 组件 第三章.Kubernetes 核心概念 3.1.Pod 3.2…

【Unity项目实战】手把手教学:飞翔的小鸟(6)添加障碍

承接上一篇&#xff1a;【Unity项目实战】手把手教学&#xff1a;飞翔的小鸟&#xff08;5&#xff09;背景滚动&#xff0c;我们已经让主角在停止不动的情况下&#xff0c;移动背景图&#xff0c;使得主角小鸟像是自己往前移动了一样&#xff0c;接下来我们将继续往下&#xf…

【王道·计算机网络】第二章 物理层

一、通信基础 1. 基本概念 1.1 物理层接口特性 物理层解决如何在连接各种计算机的传输媒体上传输比特流&#xff0c;不指定具体的传输媒体主要任务&#xff1a;确定与传输媒体接口有关的一些特性 → 定义标准接口特性&#xff1a; 机械特性&#xff1a;定义物理连接的特性&a…