优惠卷秒杀功能、全局唯一ID、乐观锁解决超卖问题、悲观锁实现一人一单、集群下锁失效问题

news2024/11/24 4:38:22

文章目录

    • 1 全局唯一ID的需求分析
    • 2 Redis实现全局唯一Id
    • 3 添加优惠卷
    • 4 实现秒杀下单
    • 5 库存超卖问题分析
    • 6 乐观锁解决超卖问题
    • 6 悲观锁实现一人一单
    • 7 集群环境下的并发问题

1 全局唯一ID的需求分析

每个店铺都可以发布优惠券:

1653362612286

当用户抢购时,就会生成订单并保存到tb_voucher_order这张表中,而订单表如果使用数据库自增ID就存在一些问题:

  • id的规律性太明显
  • 受单表数据量的限制

场景分析:如果我们的id具有太明显的规则,用户或者说商业对手很容易猜测出来我们的一些敏感信息,比如商城在一天时间内,卖出了多少单,这明显不合适。

场景分析二:随着我们商城规模越来越大,mysql的单表的容量不宜超过500W,数据量过大之后,我们要进行拆库拆表,但拆分表了之后,他们从逻辑上讲他们是同一张表,所以他们的id是不能一样的, 于是乎我们需要保证id的唯一性。

全局ID生成器,是一种在分布式系统下用来生成全局唯一ID的工具,一般要满足下列特性:

1653363100502

为了增加ID的安全性,我们可以不直接使用Redis自增的数值,而是拼接一些其它信息:

1653363172079

ID的组成部分:符号位:1bit,永远为0

时间戳:31bit,以秒为单位,可以使用69年

序列号:32bit,秒内的计数器,支持每秒产生 2 32 2^{32} 232个不同ID

2 Redis实现全局唯一Id

@Component
public class RedisIdWorker {
    /**
     * 开始时间戳
     */
    private static final long BEGIN_TIMESTAMP = 1640995200L;
    /**
     * 序列号的位数
     */
    private static final int COUNT_BITS = 32;

    private StringRedisTemplate stringRedisTemplate;

    public RedisIdWorker(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    public long nextId(String keyPrefix) {
        // 1.生成时间戳
        LocalDateTime now = LocalDateTime.now();
        long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
        long timestamp = nowSecond - BEGIN_TIMESTAMP;

        // 2.生成序列号
        // 2.1.获取当前日期,精确到天
        String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
        // 2.2.自增长
        long count = stringRedisTemplate.opsForValue().increment("icr:" + keyPrefix + ":" + date);

        // 3.拼接并返回
        return timestamp << COUNT_BITS | count;
    }
}

测试类

知识小贴士:关于countdownlatch

countdownlatch名为信号枪:主要的作用是同步协调在多线程的等待于唤醒问题

我们如果没有CountDownLatch ,那么由于程序是异步的,当异步程序没有执行完时,主线程就已经执行完了,然后我们期望的是分线程全部走完之后,主线程再走,所以我们此时需要使用到CountDownLatch

CountDownLatch 中有两个最重要的方法

1、countDown

2、await

await 方法 是阻塞方法,我们担心分线程没有执行完时,main线程就先执行,所以使用await可以让main线程阻塞,那么什么时候main线程不再阻塞呢?当CountDownLatch 内部维护的 变量变为0时,就不再阻塞,直接放行,那么什么时候CountDownLatch 维护的变量变为0 呢,我们只需要调用一次countDown ,内部变量就减少1,我们让分线程和变量绑定, 执行完一个分线程就减少一个变量,当分线程全部走完,CountDownLatch 维护的变量就是0,此时await就不再阻塞,统计出来的时间也就是所有分线程执行完后的时间。

@Test
void testIdWorker() throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(300);

    Runnable task = () -> {
        for (int i = 0; i < 100; i++) {
            long id = redisIdWorker.nextId("order");
            System.out.println("id = " + id);
        }
        latch.countDown();
    };
    long begin = System.currentTimeMillis();
    for (int i = 0; i < 300; i++) {
        es.submit(task);
    }
    latch.await();
    long end = System.currentTimeMillis();
    System.out.println("time = " + (end - begin));
}

3 添加优惠卷

每个店铺都可以发布优惠券,分为平价券和特价券。平价券可以任意购买,而特价券需要秒杀抢购:

1653365145124

tb_voucher:优惠券的基本信息,优惠金额、使用规则等
tb_seckill_voucher:优惠券的库存、开始抢购时间,结束抢购时间。特价优惠券才需要填写这些信息

平价卷由于优惠力度并不是很大,所以是可以任意领取

而代金券由于优惠力度大,所以像第二种券,就得限制数量,从表结构上也能看出,特价券除了具有优惠卷的基本信息以外,还具有库存,抢购时间,结束时间等等字段

新增普通卷代码: VoucherController

@PostMapping
public Result addVoucher(@RequestBody Voucher voucher) {
    voucherService.save(voucher);
    return Result.ok(voucher.getId());
}

新增秒杀卷代码:
VoucherController

@PostMapping("seckill")
public Result addSeckillVoucher(@RequestBody Voucher voucher) {
    voucherService.addSeckillVoucher(voucher);
    return Result.ok(voucher.getId());
}

VoucherServiceImpl

@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
    // 保存优惠券
    save(voucher);
    // 保存秒杀信息
    SeckillVoucher seckillVoucher = new SeckillVoucher();
    seckillVoucher.setVoucherId(voucher.getId());
    seckillVoucher.setStock(voucher.getStock());
    seckillVoucher.setBeginTime(voucher.getBeginTime());
    seckillVoucher.setEndTime(voucher.getEndTime());
    seckillVoucherService.save(seckillVoucher);
    // 保存秒杀库存到Redis中
    stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}

4 实现秒杀下单

下单核心思路:当我们点击抢购时,会触发右侧的请求,我们只需要编写对应的controller即可

1653365839526

秒杀下单应该思考的内容:

下单时需要判断两点:

  • 秒杀是否开始或结束,如果尚未开始或已经结束则无法下单
  • 库存是否充足,不足则无法下单

下单核心逻辑分析:

当用户开始进行下单,我们应当去查询优惠卷信息,查询到优惠卷信息,判断是否满足秒杀条件

比如时间是否充足,如果时间充足,则进一步判断库存是否足够,如果两者都满足,则扣减库存,创建订单,然后返回订单id,如果有一个条件不满足则直接结束。

1653366238564

VoucherOrderServiceImpl

@Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    // 2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀尚未开始!");
    }
    // 3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀已经结束!");
    }
    // 4.判断库存是否充足
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //6.创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    // 6.1.订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);
    // 6.2.用户id
    Long userId = UserHolder.getUser().getId();
    voucherOrder.setUserId(userId);
    // 6.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);

}

5 库存超卖问题分析

有关超卖问题分析:在我们原有代码中是这么写的

 if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    //5,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }

假设线程1过来查询库存,判断出来库存大于1,正准备去扣减库存,但是还没有来得及去扣减,此时线程2过来,线程2也去查询库存,发现这个数量一定也大于1,那么这两个线程都会去扣减库存,最终多个线程相当于一起去扣减库存,此时就会出现库存的超卖问题。

1653368335155

超卖问题是典型的多线程安全问题,针对这一问题的常见解决方案就是加锁:而对于加锁,我们通常有两种解决方案:见下图:

1653368562591

悲观锁:

悲观锁可以实现对于数据的串行化执行,比如syn,和lock都是悲观锁的代表,同时,悲观锁中又可以再细分为公平锁,非公平锁,可重入锁,等等

乐观锁:

乐观锁:会有一个版本号,每次操作数据会对版本号+1,再提交回数据时,会去校验是否比之前的版本大1 ,如果大1 ,则进行操作成功,这套机制的核心逻辑在于,如果在操作过程中,版本号只比原来大1 ,那么就意味着操作过程中没有人对他进行过修改,他的操作就是安全的,如果不大1,则数据被修改过,当然乐观锁还有一些变种的处理方式比如CAS

乐观锁的典型代表:就是cas,利用cas进行无锁化机制加锁,var5 是操作前读取的内存值,while中的var1+var2 是预估值,如果预估值 == 内存值,则代表中间没有被人修改过,此时就将新值去替换 内存值

其中do while 是为了在操作失败时,再次进行自旋操作,即把之前的逻辑再操作一次。

int var5;
do {
    var5 = this.getIntVolatile(var1, var2);
} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));

return var5;

课程中的使用方式:

课程中的使用方式是没有像cas一样带自旋的操作,也没有对version的版本号+1 ,他的操作逻辑是在操作时,对版本号进行+1 操作,然后要求version 如果是1 的情况下,才能操作,那么第一个线程在操作后,数据库中的version变成了2,但是他自己满足version=1 ,所以没有问题,此时线程2执行,线程2 最后也需要加上条件version =1 ,但是现在由于线程1已经操作过了,所以线程2,操作时就不满足version=1 的条件了,所以线程2无法执行成功

1653369268550

6 乐观锁解决超卖问题

修改代码方案一、

VoucherOrderServiceImpl 在扣减库存时,改为:

boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1") //set stock = stock -1
            .eq("voucher_id", voucherId).eq("stock",voucher.getStock()).update(); //where id = ? and stock = ?

以上逻辑的核心含义是:只要我扣减库存时的库存和之前我查询到的库存是一样的,就意味着没有人在中间修改过库存,那么此时就是安全的,但是以上这种方式通过测试发现会有很多失败的情况,失败的原因在于:在使用乐观锁过程中假设100个线程同时都拿到了100的库存,然后大家一起去进行扣减,但是100个人中只有1个人能扣减成功,其他的人在处理时,他们在扣减时,库存已经被修改过了,所以此时其他线程都会失败

修改代码方案二、

之前的方式要修改前后都保持一致,但是这样我们分析过,成功的概率太低,所以我们的乐观锁需要变一下,改成stock大于0 即可

boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update().gt("stock",0); //where id = ? and stock > 0

知识小扩展:

针对CAS中的自旋压力过大,我们可以使用Longaddr这个类去解决

Java8 提供的一个对AtomicLong改进后的一个类,LongAdder

大量线程并发更新一个原子性的时候,天然的问题就是自旋,会导致并发性问题,当然这也比我们直接使用syn来的好

所以利用这么一个类,LongAdder来进行优化

如果获取某个值,则会对cell和base的值进行递增,最后返回一个完整的值

1653370271627

6 悲观锁实现一人一单

需求:修改秒杀业务,要求同一个优惠券,一个用户只能下一单

现在的问题在于:

优惠卷是为了引流,但是目前的情况是,一个人可以无限制的抢这个优惠卷,所以我们应当增加一层逻辑,让一个用户只能下一个单,而不是让一个用户下多个单

具体操作逻辑如下:比如时间是否充足,如果时间充足,则进一步判断库存是否足够,然后再根据优惠卷id和用户id查询是否已经下过这个订单,如果下过这个订单,则不再下单,否则进行下单

1653371854389

VoucherOrderServiceImpl

初步代码:增加一人一单逻辑

@Override
public Result seckillVoucher(Long voucherId) {
    // 1.查询优惠券
    SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
    // 2.判断秒杀是否开始
    if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀尚未开始!");
    }
    // 3.判断秒杀是否已经结束
    if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
        // 尚未开始
        return Result.fail("秒杀已经结束!");
    }
    // 4.判断库存是否充足
    if (voucher.getStock() < 1) {
        // 库存不足
        return Result.fail("库存不足!");
    }
    // 5.一人一单逻辑
    // 5.1.用户id
    Long userId = UserHolder.getUser().getId();
    int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
    // 5.2.判断是否存在
    if (count > 0) {
        // 用户已经购买过了
        return Result.fail("用户已经购买过一次!");
    }

    //6,扣减库存
    boolean success = seckillVoucherService.update()
            .setSql("stock= stock -1")
            .eq("voucher_id", voucherId).update();
    if (!success) {
        //扣减库存
        return Result.fail("库存不足!");
    }
    //7.创建订单
    VoucherOrder voucherOrder = new VoucherOrder();
    // 7.1.订单id
    long orderId = redisIdWorker.nextId("order");
    voucherOrder.setId(orderId);

    voucherOrder.setUserId(userId);
    // 7.3.代金券id
    voucherOrder.setVoucherId(voucherId);
    save(voucherOrder);

    return Result.ok(orderId);

}

存在问题:现在的问题还是和之前一样,并发过来,查询数据库,都不存在订单,所以我们还是需要加锁,但是乐观锁比较适合更新数据,而现在是插入数据,所以我们需要使用悲观锁操作

**注意:**在这里提到了非常多的问题,我们需要慢慢的来思考,首先我们的初始方案是封装了一个createVoucherOrder方法,同时为了确保他线程安全,在方法上添加了一把synchronized 锁

@Transactional
public synchronized Result createVoucherOrder(Long voucherId) {

	Long userId = UserHolder.getUser().getId();
         // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            return Result.fail("用户已经购买过一次!");
        }

        // 6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1") // set stock = stock - 1
                .eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 扣减失败
            return Result.fail("库存不足!");
        }

        // 7.创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        // 7.1.订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 7.2.用户id
        voucherOrder.setUserId(userId);
        // 7.3.代金券id
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);

        // 7.返回订单id
        return Result.ok(orderId);
}

,但是这样添加锁,锁的粒度太粗了,在使用锁过程中,控制锁粒度 是一个非常重要的事情,因为如果锁的粒度太大,会导致每个线程进来都会锁住,所以我们需要去控制锁的粒度,以下这段代码需要修改为:

intern() 这个方法是从常量池中拿到数据,如果我们直接使用userId.toString() 他拿到的对象实际上是不同的对象,new出来的对象,我们使用锁必须保证锁必须是同一把,所以我们需要使用intern()方法

@Transactional
public  Result createVoucherOrder(Long voucherId) {
	Long userId = UserHolder.getUser().getId();
	synchronized(userId.toString().intern()){
         // 5.1.查询订单
        int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
        // 5.2.判断是否存在
        if (count > 0) {
            // 用户已经购买过了
            return Result.fail("用户已经购买过一次!");
        }

        // 6.扣减库存
        boolean success = seckillVoucherService.update()
                .setSql("stock = stock - 1") // set stock = stock - 1
                .eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
                .update();
        if (!success) {
            // 扣减失败
            return Result.fail("库存不足!");
        }

        // 7.创建订单
        VoucherOrder voucherOrder = new VoucherOrder();
        // 7.1.订单id
        long orderId = redisIdWorker.nextId("order");
        voucherOrder.setId(orderId);
        // 7.2.用户id
        voucherOrder.setUserId(userId);
        // 7.3.代金券id
        voucherOrder.setVoucherId(voucherId);
        save(voucherOrder);

        // 7.返回订单id
        return Result.ok(orderId);
    }
}

但是以上代码还是存在问题,问题的原因在于当前方法被spring的事务控制,如果你在方法内部加锁,可能会导致当前方法事务还没有提交,但是锁已经释放也会导致问题,所以我们选择将当前方法整体包裹起来,确保事务不会出现问题:如下:

在seckillVoucher 方法中,添加以下逻辑,这样就能保证事务的特性,同时也控制了锁的粒度

1653373434815

但是以上做法依然有问题,因为你调用的方法,其实是this.的方式调用的,事务想要生效,还得利用代理来生效,所以这个地方,我们需要获得原始的事务对象, 来操作事务

1653383810643

7 集群环境下的并发问题

通过加锁可以解决在单机情况下的一人一单安全问题,但是在集群模式下就不行了。

1、我们将服务启动两份,端口分别为8081和8082:

1653373887844

2、然后修改nginx的conf目录下的nginx.conf文件,配置反向代理和负载均衡:

1653373908620

有关锁失效原因分析

由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。

1653374044740

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/499900.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ASP.NET Core MVC 从入门到精通之序列化

随着技术的发展&#xff0c;ASP.NET Core MVC也推出了好长时间&#xff0c;经过不断的版本更新迭代&#xff0c;已经越来越完善&#xff0c;本系列文章主要讲解ASP.NET Core MVC开发B/S系统过程中所涉及到的相关内容&#xff0c;适用于初学者&#xff0c;在校毕业生&#xff0c…

Springboot +Flowable,任务认领和回退(三)

一.简介 有的时候&#xff0c;一个任务节点会存在多个候选人&#xff0c;例如&#xff1a;张三提交一个任务&#xff0c;这个任务即可以由李四处理&#xff0c;又可以由王五处理&#xff0c;那么针对这种多个任务候选人的情况&#xff0c;该如何处理&#xff1f; 二.绘制流程…

并发编程05:Java内存模型之JMM

文章目录 5.1 先从大场面试开始5.2 计算机硬件存储体系5.3 Java内存模型Java Memory Model5.4 JMM规范下三大特性5.5 JMM规范下多线程对变量的读写过程5.6 JMM规范下多线程先行发生原则之happens-before5.6.1 x,y案例说明5.6.2 先行并发原则说明5.6.3 happens-before总原则5.6.…

【面试题】面试官:说说你对MySQL的了解

文章目录 基础篇非关系型数据库和关系型数据库的区别&#xff1f;MySQL 数据库两种存储引擎的区别? 索引篇为什么索引能提高查询速度?聚集索引和非聚集索引的区别&#xff1f;非聚集索引一定回表查询吗?索引这么多优点&#xff0c;为什么不对表中的每一个列创建一个索引呢&a…

八岁都能懂:BFS判断一个图是二分图

目录 1 什么是二分图2 进入情境3 代码实现4 BFS是什么&#xff1f; 1 什么是二分图 一个图用两种颜色涂&#xff08;橙黄和橘绿&#xff09;&#xff0c;相邻节点不能同色&#xff0c;如下图&#xff0c;4与5相邻且同色&#xff0c;所以不是二分图。 2 进入情境 第一版&#xf…

微服务高频面试题

1、Spring Cloud 5大组件有哪些&#xff1f; 早期我们一般认为的Spring Cloud五大组件是 Eureka : 注册中心Ribbon : 负载均衡Feign : 远程调用Hystrix : 服务熔断Zuul/Gateway : 网关 随着SpringCloudAlibba在国内兴起 , 我们项目中使用了一些阿里巴巴的组件 注册中心/配置…

【论文】SimCLS:摘要总结的对比学习(2)

SimCLS:摘要总结的对比学习(1&#xff09; 写在最前面2 抽象总结的对比学习框架 写在最前面 SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization&#xff08;2021ACL会议&#xff09; https://arxiv.org/abs/2106.01890 论文&#xff1a;htt…

HTTP第四讲——域名和DNS

IP 协议的职责是“网际互连”&#xff0c;它在 MAC 层之上&#xff0c;使用 IP 地址把 MAC 编号转换成了四位数字&#xff0c;这就对物理网卡的 MAC 地址做了一层抽象&#xff0c;发展出了许多的“新玩法”。 例如&#xff0c;分为 A、B、C、D、E 五种类型&#xff0c;公有地址…

[GFCTF 2021] day2

Baby_Web 查看源码发现 <!--源码藏在上层目录xxx.php.txt里面&#xff0c;但你怎么才能看到它呢?--> 然后抓包看中间件&#xff0c;Apache/2.4.49 (Unix) 存在目录穿越漏洞 curl http://node4.anna.nssctf.cn:28805/cgi-bin/.%2e/.%2e/.%2e/.%2e/var/www/index …

快速上手分布式异步任务框架Celery

一、Celery架构介绍 Celery&#xff1a;芹菜&#xff1f;&#xff08;跟翻译没有任何关系&#xff09;&#xff0c;分布式异步任务框架&#xff08;跟其他web框架无关&#xff09; Celery is a project with minimal funding, so we don’t support Microsoft Windows. Please…

【嵌入式系统】课程复习资料整理

【嵌入式系统】课程复习资料整理 一、绪论 1.定义 从技术的角度定义&#xff1a;以应用为中心、以计算机技术为基础、软件硬件可裁剪、对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。从系统的角度定义&#xff1a;嵌入式系统是设计完成复杂功能的硬件和软件&a…

Android多模块开发

Android多模块开发 1. 建立项目和多个模块 ​ app为主模块 ​ app-setting为功能模块&#xff0c;可作为独立模块运行&#xff0c;也可作为其他模块的资源模块 ​ app-video为功能模块 2. 建立公共环境文件(env.gradle)并在各模块配置 Step1&#xff1a; 建立在根目录下建…

第31步 机器学习分类实战:多轮建模

开始填坑之旅。 首先&#xff0c;之前提过&#xff0c;random_state这个参数&#xff0c;它的功能是确保每次随机抽样所得到的数据都是一样的&#xff0c;有利于数据的复现。比如&#xff0c;我们这十个ML模型&#xff0c;用的参数都是random_state666&#xff0c;这样作比较才…

【写一个hello的html页面,将页面放到服务器,通过浏览器访问页面,这个过程是怎么实现的?】第一个 servlet 程序

第一个 servlet 程序 第一个 servlet 程序1. 创建项目创建好后的 默认目录 解析 2. 引入依赖为什么要引入依赖&#xff1f; 3. 创建目录结构1、在 main 目录下创建一个 webapp 目录2、在 webapp 下创建一个 WEB-INF 目录3、在 WEB-INF 目录下创建一个 web.xml 文件4、web.xml 需…

章节3:02-Apache Commons Collections反序列化漏洞

章节3&#xff1a;02-Apache Commons Collections反序列化漏洞 02-Apache Commons Collections反序列化漏洞 漏洞爆出 2015.01.28 Gabriel Lawrence和Chris Frohoff https://speakerdeck.com/frohoff/appseccali-2015-marshalling-pickles-how-deserializing-objects-can-r…

《Java虚拟机学习》 asmtools 字节码汇编器使用 与 JVM识别方法重载 的思考

1.asmtools下载 链接&#xff1a;https://pan.baidu.com/s/1R3nAaUbN1Dkf6UKkdEMSEA?pwdk8l8 提取码&#xff1a;k8l8 2.结合方法重载实验的使用 总所周知&#xff0c;方法重载跟方法名无关&#xff0c;但对于JVM而言&#xff0c;区别方法主要通过 类名&#xff0c;方法名&…

java spring MVC REST风格概念叙述

REST属于spring MVC中的一个知识点 REST是三个单词的缩写 即 Representational State Transfer 意思为 表现形式状态转换 老实说 不用尝试字面上理解 因为字面意思 确实是比较抽象 其实 意思就是 访问网络资源的格式 转换 下图 对比了 传统风格和REST风格 请求路径的差别 RES…

【英语】大学英语CET考试,阅读部分2(长篇阅读,选词填空,综合演练)

文章目录 1、长篇阅读&#xff08;连连看&#xff0c;要会做&#xff09;1.1 解题技巧&#xff08;定位词扫读&#xff0c;看到大于看懂&#xff0c;一题带练&#xff09;1.2 做题方法复习总结1.3 题目练习&#xff08;2篇文章&#xff09; 2、选词填空&#xff08;只有5分&…

opencv_c++学习(五)

Mat类数值存储方式 上图为opencv中三通道数据的存储方式&#xff0c;反映到图像上则为空间维度为3*3&#xff0c;通道为3的图像。 Mat类的属性 Mat类的属性如上&#xff0c;在这里我们解释一下step。step是行列数与数据类型的字节数相乘的数据。 Mat类元素读取 在Mat中&…

云原生: istio+dapr构建多运行时服务网格...  多运行时是一个非常新的概念。在

2020 年&#xff0c;Bilgin Ibryam 提出了 Multi-Runtime&#xff08;多运行时&#xff09;的理念&#xff0c;对基于 Sidecar 模式的各种产品形态进行了实践总结和理论升华。那到底什么是多运行时呢&#xff1f;首先还是得从分布式应用的四大类基本需求讲起。简单来讲任何分布…