查询缓存实现、缓存更新策略选择、解决缓存穿透缓存雪崩缓存击穿问题

news2024/12/29 10:04:12

文章目录

    • 1 什么是缓存?
      • 1.1 为什么要使用缓存
      • 1.2 如何使用缓存
    • 2 给商户信息查询业务添加缓存
      • 2.1 缓存模型和思路
      • 2.2 代码如下
    • 3 缓存更新策略
      • 3.1 数据库缓存不一致解决方案:
      • 3.2 数据库和缓存不一致采用什么方案
      • 3.3 删除缓存还是更新缓存?
      • 3.4 如何保证缓存与数据库的操作的同时成功或失败?
      • 3.5 先操作缓存还是先操作数据库?
      • 3.6 缓存更新策略的最佳实践方案
      • 3.7 代码实现商铺和缓存与数据库双写一致
    • 4 缓存穿透问题的解决思路
      • 4.1 定义
      • 4.2 解决方案
      • 4.3 解决商品查询的缓存穿透问题
      • 4.4 总结
    • 5 缓存雪崩问题及解决思路
      • 5.1 定义
      • 5.2 解决方案
    • 6 缓存击穿问题及解决思路
      • 6.1 定义
      • 6.2 解决办法
        • 6.2.1 使用互斥锁来解决
        • 6.2.2 逻辑过期方案
      • 6.3 利用互斥锁解决缓存击穿问题代码
      • 6.4 利用逻辑过期解决缓存击穿问题代码
      • 6.5 封装Redis工具类
    • 总结

1 什么是缓存?

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码(例如:

1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); // 本地用于高并发2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); // 用于redis等缓存3:Static final Map<K,V> map =  new HashMap(); // 本地缓存

由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;

1.1 为什么要使用缓存

一句话:因为速度快,好用

缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力

实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术;

但是缓存也会增加代码复杂度和运营的成本:

1.2 如何使用缓存

实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用

浏览器缓存:主要是存在于浏览器端的缓存

应用层缓存: 可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存

数据库缓存: 在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中

CPU缓存: 当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存

2 给商户信息查询业务添加缓存

在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存

@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {
    //这里是直接查询数据库
    return shopService.queryById(id);
}

2.1 缓存模型和思路

标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。

1653322097736

2.2 代码如下

代码思路:如果缓存有,则直接返回,如果缓存不存在,则查询数据库,然后存入redis。

1653322190155

3 缓存更新策略

缓存更新是redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向redis插入太多数据,此时就可能会导致缓存中的数据过多,所以redis会对部分数据进行更新,或者把他叫为淘汰更合适。

**内存淘汰:**redis自动进行,当redis内存达到咱们设定的max-memery的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

**超时剔除:**当我们给redis设置了过期时间ttl之后,redis会将超时的数据进行删除,方便咱们继续使用缓存

**主动更新:**我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

1653322506393

3.1 数据库缓存不一致解决方案:

由于我们的缓存的数据源来自于数据库,而数据库的数据是会发生变化的,因此,如果当数据库中数据发生变化,而缓存却没有同步,此时就会有一致性问题存在,其后果是:

用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案

Cache Aside Pattern 人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

Read/Write Through Pattern : 由系统本身完成,数据库与缓存的问题交由系统本身去处理

Write Behind Caching Pattern :调用者只操作缓存,其他线程去异步处理数据库,实现最终一致

1653322857620

3.2 数据库和缓存不一致采用什么方案

综合考虑使用方案一:Cache Aside Pattern,但是方案一调用者如何处理呢?这里有几个问题

操作缓存和数据库时有三个问题需要考虑:

3.3 删除缓存还是更新缓存?

  • 更新缓存:每次更新数据库都更新缓存,无效写操作较多

  • 删除缓存:更新数据库时让缓存失效,查询时再更新缓存

如果采用更新缓存方案,那么假设我们每次操作数据库后,都操作缓存,但是中间如果没有人查询,那么这个更新动作实际上只有最后一次生效,中间的更新动作意义并不大

我们选择把缓存删除,等待再次查询时,将缓存中的数据加载出来

3.4 如何保证缓存与数据库的操作的同时成功或失败?

  • 单体系统,将缓存与数据库操作放在一个事务
  • 分布式系统,利用TCC等分布式事务方案

3.5 先操作缓存还是先操作数据库?

  • 先删除缓存,再操作数据库
  • 先操作数据库,再删除缓存

1653323595206

看上图咱们来理一理——应该具体操作缓存还是操作数据库,我们应当是先操作数据库,再删除缓存

如果你选择先删除换缓存,再操作数据库,在两个线程并发来访问时,假设线程1先来,他先把缓存删了,此时线程2过来,他查询缓存数据并不存在,此时他写入缓存,当他写入缓存后,线程1再执行更新动作时,实际上写入的就是旧的数据,新的数据被旧数据覆盖了。

选择先操作数据库,再删除缓存,线程1来查询时,恰好缓存失效,于是查完了数据库,打算去写缓存(快)。说时迟那时快,就在这时线程2来更新数据库(慢)、删除缓存。这时候线程1才写缓存。
但是这种方案出现问题的概率很低,因为数据库更新操作比缓存慢得多,出现这种情况概率极地。

3.6 缓存更新策略的最佳实践方案

3.7 代码实现商铺和缓存与数据库双写一致

核心思路如下:

修改ShopController中的业务逻辑,满足下面的需求:

根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间

根据id修改店铺时,先修改数据库,再删除缓存

修改重点代码1:修改ShopServiceImpl的queryById方法

设置redis缓存时添加过期时间

1653325871232

修改重点代码2

代码分析:通过之前的淘汰,我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题

4 缓存穿透问题的解决思路

缓存穿透(一根针)

4.1 定义

缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

4.2 解决方案

常见的解决方案有两种:

缓存空对象: 当我们客户端访问不存在的数据时,先请求redis,但是此时redis中没有数据,此时会访问到数据库,但是数据库中也没有数据,这个数据穿透了缓存,直击数据库,我们都知道数据库能够承载的并发不如redis这么高,如果大量的请求同时过来访问这种不存在的数据,这些请求就都会访问到数据库,简单的解决方案就是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,这样,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到缓存了

布隆过滤: 布隆过滤器其实采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组,走哈希思想去判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,

假设布隆过滤器判断这个数据不存在,则直接返回

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突

1653326156516

4.3 解决商品查询的缓存穿透问题

核心思路如下:

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

1653327124561

4.4 总结

缓存穿透产生的原因是什么?

  • 用户请求的数据在缓存中和数据库中都不存在,不断发起这样的请求,给数据库带来巨大压力

缓存穿透的解决方案有哪些?

  • 缓存null值
  • 布隆过滤
  • 增强id的复杂度,避免被猜测id规律
  • 做好数据的基础格式校验
  • 加强用户权限校验
  • 做好热点参数的限流

5 缓存雪崩问题及解决思路

缓存雪崩(好多没了)

5.1 定义

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

1653327884526

5.2 解决方案

  • 给不同的Key的TTL添加随机
  • 利用Redis集群提高服务的可用性
  • 给缓存业务添加降级限流策略
  • 给业务添加多级缓存

6 缓存击穿问题及解决思路

缓存击穿(热点Key)

6.1 定义

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

6.2 解决办法

常见的解决方案有两种:

  • 互斥锁
  • 逻辑过期

逻辑分析:假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大。

6.2.1 使用互斥锁来解决

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

6.2.2 逻辑过期方案

方案分析:我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用我们内存了吗,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。这个expire并不是Redis的TTL,而是一个标志位用于判断这个数据是否是过期的。即使是过期的也不会自动从Redis中移除。

假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

这种方案巧妙在于,异步的构建缓存,缺点在于在构建完缓存之前,返回的都是脏数据。

1653328663897

与逻辑过期方案进行对比

1653357522914

互斥锁方案: 由于保证了互斥性,所以数据一致,且实现简单,因为仅仅只需要加一把锁而已,也没其他的事情需要操心,所以没有额外的内存消耗,缺点在于有锁就有死锁问题的发生,且只能串行执行性能肯定受到影响

逻辑过期方案: 线程读取过程中不需要等待,性能好,有一个额外的线程持有锁去进行重构数据,但是在重构数据完成前,其他的线程只能返回之前的数据,且实现起来麻烦

6.3 利用互斥锁解决缓存击穿问题代码

核心思路:相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是 进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询

如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿

1653357860001

操作锁的代码:

核心思路就是利用redis的setnx方法来表示获取锁,该方法含义是redis中如果没有这个key,则插入成功,返回1,在stringRedisTemplate中返回true, 如果有这个key则插入失败,则返回0,在stringRedisTemplate返回false,我们可以通过true,或者是false,来表示是否有线程成功插入key,成功插入的key的线程我们认为他就是获得到锁的线程。

private boolean tryLock(String key) {
    Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
    return BooleanUtil.isTrue(flag);
}

private void unlock(String key) {
    stringRedisTemplate.delete(key);
}

操作代码:

 public Shop queryWithMutex(Long id)  {
        String key = CACHE_SHOP_KEY + id;
        // 1、从redis中查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get("key");
        // 2、判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 存在,直接返回
            return JSONUtil.toBean(shopJson, Shop.class);
        }
        //判断命中的值是否是空值
        if (shopJson != null) {
            //返回一个错误信息
            return null;
        }
        // 4.实现缓存重构
        //4.1 获取互斥锁
        String lockKey = "lock:shop:" + id;
        Shop shop = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2 判断否获取成功
            if(!isLock){
                //4.3 失败,则休眠重试
                Thread.sleep(50);
                return queryWithMutex(id);
            }
            //4.4 成功,根据id查询数据库
             shop = getById(id);
            // 5.不存在,返回错误
            if(shop == null){
                 //将空值写入redis
                stringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);
                //返回错误信息
                return null;
            }
            //6.写入redis
            stringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);

        }catch (Exception e){
            throw new RuntimeException(e);
        }
        finally {
            //7.释放互斥锁
            unlock(lockKey);
        }
        return shop;
    }

6.4 利用逻辑过期解决缓存击穿问题代码

需求:修改根据id查询商铺的业务,基于逻辑过期方式来解决缓存击穿问题

思路分析:当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

1653360308731

如果封装数据:因为现在redis中存储的数据的value需要带上过期时间,此时要么你去修改原来的实体类,要么你

步骤一、

新建一个实体类,我们采用第二个方案,这个方案,对原来代码没有侵入性。

@Data
public class RedisData {
    private LocalDateTime expireTime;
    private Object data;
}

步骤二、

ShopServiceImpl 新增此方法,利用单元测试进行缓存预热

1653360807133

在测试类中

1653360864839

步骤三:正式代码

ShopServiceImpl

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {
    String key = CACHE_SHOP_KEY + id;
    // 1.从redis查询商铺缓存
    String json = stringRedisTemplate.opsForValue().get(key);
    // 2.判断是否存在
    if (StrUtil.isBlank(json)) {
        // 3.存在,直接返回
        return null;
    }
    // 4.命中,需要先把json反序列化为对象
    RedisData redisData = JSONUtil.toBean(json, RedisData.class);
    Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);
    LocalDateTime expireTime = redisData.getExpireTime();
    // 5.判断是否过期
    if(expireTime.isAfter(LocalDateTime.now())) {
        // 5.1.未过期,直接返回店铺信息
        return shop;
    }
    // 5.2.已过期,需要缓存重建
    // 6.缓存重建
    // 6.1.获取互斥锁
    String lockKey = LOCK_SHOP_KEY + id;
    boolean isLock = tryLock(lockKey);
    // 6.2.判断是否获取锁成功
    if (isLock){
        CACHE_REBUILD_EXECUTOR.submit( ()->{

            try{
                //重建缓存
                this.saveShop2Redis(id,20L);
            }catch (Exception e){
                throw new RuntimeException(e);
            }finally {
                unlock(lockKey);
            }
        });
    }
    // 6.4.返回过期的商铺信息
    return shop;
}

6.5 封装Redis工具类

基于StringRedisTemplate封装一个缓存工具类,满足下列需求:

  • 方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间

  • 方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓存击穿问题

  • 方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题

  • 方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题

将逻辑进行封装

@Slf4j
@Component
public class CacheClient {

    private final StringRedisTemplate stringRedisTemplate;

    private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);

    public CacheClient(StringRedisTemplate stringRedisTemplate) {
        this.stringRedisTemplate = stringRedisTemplate;
    }

    public void set(String key, Object value, Long time, TimeUnit unit) {
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);
    }

    public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {
        // 设置逻辑过期
        RedisData redisData = new RedisData();
        redisData.setData(value);
        redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));
        // 写入Redis
        stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));
    }

    public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(json)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(json, type);
        }
        // 判断命中的是否是空值
        if (json != null) {
            // 返回一个错误信息
            return null;
        }

        // 4.不存在,根据id查询数据库
        R r = dbFallback.apply(id);
        // 5.不存在,返回错误
        if (r == null) {
            // 将空值写入redis
            stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
            // 返回错误信息
            return null;
        }
        // 6.存在,写入redis
        this.set(key, r, time, unit);
        return r;
    }

    public <R, ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String json = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isBlank(json)) {
            // 3.存在,直接返回
            return null;
        }
        // 4.命中,需要先把json反序列化为对象
        RedisData redisData = JSONUtil.toBean(json, RedisData.class);
        R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);
        LocalDateTime expireTime = redisData.getExpireTime();
        // 5.判断是否过期
        if(expireTime.isAfter(LocalDateTime.now())) {
            // 5.1.未过期,直接返回店铺信息
            return r;
        }
        // 5.2.已过期,需要缓存重建
        // 6.缓存重建
        // 6.1.获取互斥锁
        String lockKey = LOCK_SHOP_KEY + id;
        boolean isLock = tryLock(lockKey);
        // 6.2.判断是否获取锁成功
        if (isLock){
            // 6.3.成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                try {
                    // 查询数据库
                    R newR = dbFallback.apply(id);
                    // 重建缓存
                    this.setWithLogicalExpire(key, newR, time, unit);
                } catch (Exception e) {
                    throw new RuntimeException(e);
                }finally {
                    // 释放锁
                    unlock(lockKey);
                }
            });
        }
        // 6.4.返回过期的商铺信息
        return r;
    }

    public <R, ID> R queryWithMutex(
            String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {
        String key = keyPrefix + id;
        // 1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断是否存在
        if (StrUtil.isNotBlank(shopJson)) {
            // 3.存在,直接返回
            return JSONUtil.toBean(shopJson, type);
        }
        // 判断命中的是否是空值
        if (shopJson != null) {
            // 返回一个错误信息
            return null;
        }

        // 4.实现缓存重建
        // 4.1.获取互斥锁
        String lockKey = LOCK_SHOP_KEY + id;
        R r = null;
        try {
            boolean isLock = tryLock(lockKey);
            // 4.2.判断是否获取成功
            if (!isLock) {
                // 4.3.获取锁失败,休眠并重试
                Thread.sleep(50);
                return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);
            }
            // 4.4.获取锁成功,根据id查询数据库
            r = dbFallback.apply(id);
            // 5.不存在,返回错误
            if (r == null) {
                // 将空值写入redis
                stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
                // 返回错误信息
                return null;
            }
            // 6.存在,写入redis
            this.set(key, r, time, unit);
        } catch (InterruptedException e) {
            throw new RuntimeException(e);
        }finally {
            // 7.释放锁
            unlock(lockKey);
        }
        // 8.返回
        return r;
    }

    private boolean tryLock(String key) {
        Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);
        return BooleanUtil.isTrue(flag);
    }

    private void unlock(String key) {
        stringRedisTemplate.delete(key);
    }
}

在ShopServiceImpl 中

@Resource
private CacheClient cacheClient;

 	@Override
    public Result queryById(Long id) {
        // 解决缓存穿透
        Shop shop = cacheClient
                .queryWithPassThrough(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);

        // 互斥锁解决缓存击穿
        // Shop shop = cacheClient
        //         .queryWithMutex(CACHE_SHOP_KEY, id, Shop.class, this::getById, CACHE_SHOP_TTL, TimeUnit.MINUTES);

        // 逻辑过期解决缓存击穿
        // Shop shop = cacheClient
        //         .queryWithLogicalExpire(CACHE_SHOP_KEY, id, Shop.class, this::getById, 20L, TimeUnit.SECONDS);

        if (shop == null) {
            return Result.fail("店铺不存在!");
        }
        // 7.返回
        return Result.ok(shop);
    }

总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/499676.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL --- DQL

使用DDL语句来操作数据库以及表结构&#xff08;数据库设计&#xff09;使用DML语句来完成数据库中数据的增、删、改操作&#xff08;数据库操作&#xff09; 学习数据库操作方面的内容&#xff1a;查询&#xff08;DQL语句&#xff09;。 查询操作我们分为两部分学习&#…

chatgpt如何接入本地知识库?我们来看看EMNLP 2022 INFO是如何融入本地知识的

一、概述 title&#xff1a;You Truly Understand What I Need : Intellectual and Friendly Dialogue Agents grounding Knowledge and Persona 论文地址&#xff1a;You Truly Understand What I Need : Intellectual and Friendly Dialog Agents grounding Persona and Know…

基于S/Key协议的身份认证系统设计与实现【python】

实验内容 1 、 身份认证系统设计 设计身份认证系统的功能、主要界面、主要软件模块&#xff0c;以及采用的认证技术路线和方法。 2 、 编程实现所设计的身份认证系统 在C、Python或Java程序设计环境下&#xff0c;编程实现基于S/Key协议的身份认证系统。要求实现的身份认证…

计算机中丢失msvcp140.dll无法启动此程序怎么办?msvcp140.dll在哪里

电脑系统中的 msvcp140.dll 文件是 Microsoft Visual C Redistributable 组件的一部分&#xff0c;它们提供了许多在 Windows 操作系统中运行的应用程序所需的重要函数和库。如果丢失了 msvcp140.dll 文件&#xff0c;你可能会遇到多种错误&#xff0c;比如无法运行应用程序、系…

【RabbitMQ】安装及六种模式

文章目录 安装rabbitmq镜像访问容器内部15672端口映射到外面的端口地址RabbitMQ六种模式Hello world模式Work queues模式Publish/Subscribe模式交换机fanout类型 Routing模式Topics模式RPC模式 rabbitmq&#xff1a;0->1的学习 学习文档&#xff1a;https://www.cnblogs.com…

Java集合之双列集合

双列集合特点 双列集合一次需要添加一对数据&#xff0c;分别是键和值键不能重复&#xff0c;值可以重复键和值是一一对应的&#xff0c;每一个键只能找到自己对应的值键 值这个整体称为“键值对”或者“键值对对象”&#xff0c;Java中叫“Entry对象” 双列集合的体系结构 Ma…

linux系统systemd初始化进程

前言&#xff1a;目前绝大多数服务器系统以及从RHEL6换成RHEL7了&#xff0c;以前习惯使用service来管理系统服务的&#xff0c;那么现在就比较郁闷了&#xff0c;RHEL7系统中使用systemctl命令来管理服务。 systemctl启动、重启、停止、查看状态命令&#xff1a; systemctl …

算法竞赛字符串篇之C++中string的成员函数

2023年5月7日&#xff0c;周日中午&#xff1a; 今天决定从字符串这个知识点开始学起&#xff0c;记录一下我今天的字符串学习。 不定期更新。 相关的英文文档&#xff1a; https://cplusplus.com/reference/string/string/ 容量方面的成员函数&#xff1a; empty&#xff…

基于AT89C51单片机的电子闹钟设计与仿真

点击链接获取Keil源码与Project Backups仿真图: https://download.csdn.net/download/qq_64505944/87761718?spm=1001.2014.3001.5503 源码获取 主要内容: 基于51单片机设计一个电子闹钟,至少具有以下功能:时间的设定、时间的调整、闹钟的设定、温度的设定。 基本要求:…

排队论_M/M/1/inf/inf 问题

例:某修理店只有一一个修理工人&#xff0c;来修理的顾客到达数服从泊松分布&#xff0c;平均每小时4人;修理时间服从负指数分布&#xff0c;平均需6分钟。求: (1)修理店空闲的概率; (2)店内有3个顾客的概率; (3)店内至少有1个顾客的概率; (4)店内顾客的平均数; (5)顾客在店内的…

显著性检测:从传统方法到深度学习网络的演进与挑战

显著性检测技术在计算机视觉领域中扮演着至关重要的角色&#xff0c;它是一项对图像中最显著或最有区别的视觉特征进行分析和提取的技术。显著性检测技术可以为计算机视觉任务提供帮助&#xff0c;例如图像分割、目标检测、场景理解、图像检索和人机交互等方面。 本文将从传统方…

【MySQL】基于规则的优化(内含子查询优化;派生表;物化表;半连接;标量子查询;行子查询)

概念 常量表&#xff1a;下述两种查询方式查询的表&#xff1a; 类型1&#xff1a;查询的表中一条记录都没有&#xff0c;或者只有一条记录。 类型2&#xff1a;使用主键等值匹配或者唯一二级索引列等值匹配作为搜索条件来查询某个表 派生表&#xff1a;放在FROM子句后面的子…

UDP报头、TCP报头、IP报头、MAC头部、ARP头部

前言&#xff1a;DUP报头、TCP报头、IP报头、MAC头部、ARP头部。 UDP报头&#xff1a; UDP报头由八个字节组成&#xff0c;每个字段都是两个字节 &#xff1a; 1.源端口号&#xff1a;发送方端口号&#xff0c;需要对方回信的时候选用&#xff0c;不需要对方回信的时候置0 …

[LeetCode复盘] LCCUP‘23春季赛组队赛 20230507

[LeetCode复盘] LCCUP23春季赛组队赛 20230507 一、本周周赛总结1. 符文储备1. 题目描述2. 思路分析3. 代码实现 2. 城墙防线1. 题目描述2. 思路分析3. 代码实现 3. 提取咒文1. 题目描述2. 思路分析3. 代码实现 4. 生物进化录1. 题目描述2. 思路分析3. 代码实现 5. 与非的谜题…

HNU-操作系统OS-实验Lab3

OS_Lab3_Experimental report 湖南大学信息科学与工程学院 计科 210X wolf &#xff08;学号 202108010XXX&#xff09; 实验目的 了解虚拟内存的Page Fault异常处理实现了解页替换算法在操作系统中的实现 实验内容 本次实验是在lab2的基础上&#xff0c;借助于页表机制…

【python数据分析】运算符与表达式

&#x1f64b;‍ 哈喽大家好&#xff0c;本次是python数据分析、挖掘与可视化专栏第三期 ⭐本期内容&#xff1a;运算符与表达式 &#x1f3c6;系列专栏&#xff1a;Python数据分析、挖掘与可视化 &#x1f44d;保持开心&#xff0c;拒绝拖延&#xff0c;你想要的都会有&#x…

车载软件架构——闲聊几句AUTOSAR BSW(四)

我是穿拖鞋的汉子,魔都中坚持长期主义的工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 我们并不必要为了和谐,而时刻保持通情达理;我们需要具备的是,偶尔有肚量欣然承认在某些方面我们可能会有些不可理喻。该有主见的时候能掷地有声地镇得住场…

iOS 对https App内部的http请求进行白名单设置

苹果从iOS9开始要求应用使用Https链接来对请求进行加密,来保证数据的安全.如果使用http请求将会报错,当然,如果你想继续使用http请求,有两种方式: 1.使用ASIHttpRequest来请求,ASI是使用CFNetwork来处理请求的,更底层些,避开了苹果的限制 2.在Info.plist文件设置如下 <key…

Docker安装常用软件-Apollo(有问题)

零&#xff1a;apollo概念介绍 官网网站&#xff1a;GitHub - apolloconfig/apollo: Apollo is a reliable configuration management system suitable for microservice configuration management scenarios. gitee网址&#xff1a;mirrors / ctripcorp / apollo GitCode …