kingglory/ChatGLM-6B 项目地址
1 介绍
对于 ChatGLM-6B 模型基于 P-Tuning v2 的微调。P-Tuning v2 将需要微调的参数量减少到原来的 0.1%,再通过模型量化、Gradient Checkpoint 等方法,差不多需要 7GB或则8GB 显存即可运行。
2 环境
2.1 python 环境
conda create -n py310_chat python=3.10 # 创建新环境
source activate py310_chat # 激活环境
或者
# 创建虚拟环境
conda create -n xxx python=3.8
# 进入虚拟环境
conda activate xxx
# 退出当前虚拟环境
conda deactivate
# 查看本地虚拟环境
conda info --env
# 删除虚拟环境
conda remove -n xxx --all
2.2 下载代码
git clone https://github.com/THUDM/ChatGLM-6B.git
cd ChatGLM-6B
2.3 安装依赖
运行微调需要4.27.1版本的transformers。除 ChatGLM-6B 的依赖之外,还需要按照以下依赖
# torch cuda 安装要匹配cuda 驱动版本:
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# 安装gradio用于启动图形化web界面
pip install gradio
pip install -r requirements.txt
pip install rouge_chinese nltk jieba datasets
验证pytorch是否为GPU版本
import torch
torch.cuda.is_available() ## 输出应该是True
2.4(选做)
在运行前,可以修改一些文件内容
# web_demo.py
# 1. 新增mirror='https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models,下载模型使用清华源
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, mirror='https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models')
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True, mirror='https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models').half().cuda()
# 2. 增加server_name和server_port参数
demo.queue().launch(share=True,server_name="0.0.0.0",server_port=9234)
3 运行
#基于 Gradio 的网页版 Demo
python web_demo.py
#命令行 Demo
python cli_demo.py
值得注意的是: 显存够用下面这些不用管,当显存不够时(即GPU 显存有限低于13GB),尝试以量化方式加载模型的,需要添加代码.quantize(8) .quantize(4) :
int8精度加载,需要10G显存;
int4精度加载,需要6G显存;
#将句子对列表传给tokenizer,就可以对整个数据集进行分词处理
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) #将文本转换为模型能理解的数字# 自动加载该模型训练时所用的分词器
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(6).cuda()#从checkpoint实例化任何模型,下载预训练模型
4 微调
https://github.com/THUDM/ChatGLM-6B/tree/main/ptuning
4.1 数据集
从 Google Drive或Tsinghua Cloud 下载处理好的 ADGEN 数据集,将解压后的 AdvertiseGen 目录放到本目录下(ptuning/AdvertiseGen)
4.2 模型下载
Huggingface 平台下载
git lfs install
git clone https://huggingface.co/THUDM/chatglm-6b
4.3 微调训练
cd ptuning/
bash train.sh
注 train.sh 脚本如下
PRE_SEQ_LEN=128 # soft prompt 长度,P-tuning v2 参数
LR=1e-2 # 训练的学习率,P-tuning v2 参数
CUDA_VISIBLE_DEVICES=0 python main.py \
--do_train \ # 训练
--train_file AdvertiseGen/train.json \ # 训练集地址
--validation_file AdvertiseGen/dev.json \ # 验证集地址
--prompt_column content \ # 训练集中prompt 的key名称【可以理解为输入值的key】
--response_column summary \ # 训练集中response的key名称【可以理解为生成值的key】
--overwrite_cache \ # 是否覆盖 缓存
--model_name_or_path THUDM/chatglm-6b \ # chatglm-6b 模型地址
--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \ # 模型保存地址
--overwrite_output_dir \
--max_source_length 64 \
--max_target_length 64 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 16 \
--predict_with_generate \
--max_steps 3000 \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate $LR \
--pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 8 # 模型 量化方式,P-tuning v2 参数
train.sh 中的 PRE_SEQ_LEN 和 LR 分别是 soft prompt 长度和训练的学习率,可以进行调节以取得最佳的效果。P-Tuning-v2 方法会冻结全部的模型参数,可通过调整 quantization_bit 来被原始模型的量化等级,不加此选项则为 FP16 精度加载。
在默认配置 quantization_bit=4、per_device_train_batch_size=1、gradient_accumulation_steps=16 下,INT4 的模型参数被冻结,一次训练迭代会以 1 的批处理大小进行 16 次累加的前后向传播,等效为 16 的总批处理大小,此时最低只需 6.7G 显存。若想在同等批处理大小下提升训练效率,可在二者乘积不变的情况下,加大 per_device_train_batch_size 的值,但也会带来更多的显存消耗,请根据实际情况酌情调整。
4.4 模型推理
将 evaluate.sh 中的 CHECKPOINT 更改为训练时保存的 checkpoint 名称,运行以下指令进行模型推理和评测:
bash evaluate.sh
注 evaluate.sh 脚本如下
PRE_SEQ_LEN=128
CHECKPOINT=adgen-chatglm-6b-pt-8-1e-2
STEP=3000
CUDA_VISIBLE_DEVICES=0 python3 main.py \
--do_predict \
--validation_file AdvertiseGen/dev.json \
--test_file AdvertiseGen/dev.json \
--overwrite_cache \
--prompt_column content \
--response_column summary \
--model_name_or_path ./output/$CHECKPOINT/checkpoint-$STEP \
--output_dir ./output/$CHECKPOINT \
--overwrite_output_dir \
--max_source_length 64 \
--max_target_length 64 \
--per_device_eval_batch_size 1 \
--predict_with_generate \
--pre_seq_len $PRE_SEQ_LEN \
--quantization_bit 4
4.5 生成结果分析
评测指标为中文 Rouge score 和 BLEU-4。生成的结果保存在 ./output/adgen-chatglm-6b-pt-8-1e-2/generated_predictions.txt。
- 示例1
Input: 类型#上衣*材质#牛仔布*颜色#白色*风格#简约*图案#刺绣*衣样式#外套*衣款式#破洞
Label: 简约而不简单的牛仔外套,白色的衣身十分百搭。衣身多处有做旧破洞设计,打破单调乏味,增加一丝造型看点。衣身后背处有趣味刺绣装饰,丰富层次感,彰显别样时尚。
Output[微调前]: 这件上衣的材质是牛仔布,颜色是白色,风格是简约,图案是刺绣,衣样式是外套,衣款式是破洞。
Output[微调后]: 这是一款简约的牛仔外套,破洞设计,将牛仔布破洞,带来一种随意与个性。破洞的牛仔外套,展现出时尚气息,带来一种休闲感。同时,刺绣图案,让整件外套更加立体。
- 示例2
Input: 类型#裙*版型#显瘦*风格#文艺*风格#简约*图案#印花*图案#撞色*裙下摆#压褶*裙长#连衣裙*裙领型#圆领
Label: 文艺个性的印花连衣裙,藏青色底蕴,低调又大气,撞色太阳花分布整个裙身,绚丽而美好,带来时尚减龄的气质。基础款的舒适圆领,简约不失大方,勾勒精致脸庞。领后是一粒包布扣固定,穿脱十分方便。前片立体的打褶设计,搭配后片压褶的做工,增添层次和空间感,显瘦又有型。
Output[微调前]: 类型#裙版型#显瘦风格#文艺风格#简约图案#印花图案#撞色裙下摆#压褶裙长#连衣裙裙领型#圆领 1. 连衣裙:简约风格,裙长为膝盖以上,裙领型为圆领。2. 裙下摆:压褶设计,使裙摆呈现出流畅的褶皱效果。3. 裙领型:裙领型为圆领,使穿上连衣裙后更加有型。4. 版型:采用显瘦设计,让连衣裙看起来更加苗条。5. 风格:文艺风格,让连衣裙更加有内涵和品味。6. 图案:印花设计,在连衣裙上印有独特的图案。7. 撞色:采用撞色设计,让连衣裙在色彩上更加鲜明、富有层次感。
Output[微调后]: 这是一款文艺范的连衣裙,以印花为元素,采用简约的印花,既能够突出文艺气质,又能够展现简约风。在印花的同时又有领子和裙摆的压褶设计,更加凸显文艺气质。简约而不会过于单调,搭配出街,穿着十分舒适。
4.6 模型部署
将对应的demo或代码中的THUDM/chatglm-6b换成经过 P-Tuning 微调之后 checkpoint 的地址(在示例中为 ./output/adgen-chatglm-6b-pt-8-1e-2/checkpoint-3000)。注意,目前的微调还不支持多轮数据,所以只有对话第一轮的回复是经过微调的。
默认情况下,模型以 FP16 精度加载(无量化),需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:
- 模型量化
# 按需修改,目前只支持 4/8 bit 量化
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).quantize(8).half().cuda()
8-bit 量化下 GPU 显存占用约为 10GB,4-bit 量化下仅需 6GB 占用
随着对话轮数的增多,对应显存消耗也随之增大
理论上 ChatGLM-6B 支持无限长的 context-length,但总长度超过 2048 后性能会逐渐下降
量化模型会带来一定的性能损失
量化模型加载方式
# INT8 量化的模型将"THUDM/chatglm-6b-int4"改为"THUDM/chatglm-6b-int8"
model = AutoModel.from_pretrained("THUDM/chatglm-6b-int4", trust_remote_code=True).half().cuda()
- CPU 部署(需要 32G 内存)
在 32G 内存的机器上经过测试,推理速度很慢
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
友情链接
以下是部分基于本仓库开发的开源项目:
- SwissArmyTransformer: 一个Transformer统一编程框架,ChatGLM-6B已经在SAT中进行实现并可以进行P-tuning微调。
- ChatGLM-MNN: 一个基于 MNN 的 ChatGLM-6B C++ 推理实现,支持根据显存大小自动分配计算任务给 GPU 和 CPU。
- ChatGLM-Tuning: 基于 LoRA 对 ChatGLM-6B 进行微调。类似的项目还包括 Humanable ChatGLM/GPT Fine-tuning | ChatGLM 微调
- langchain-ChatGLM:基于本地知识的 ChatGLM 应用,基于LangChain
- bibliothecarius:快速构建服务以集成您的本地数据和AI模型,支持ChatGLM等本地化模型接入。
- 闻达:大型语言模型调用平台,基于 ChatGLM-6B 实现了类 ChatPDF 功能
- JittorLLMs:最低3G显存或者没有显卡都可运行 ChatGLM-6B FP16, 支持Linux、windows、Mac部署
5 遇到的问题
报错1
ERROR: Could not find a version that satisfies the requirement protobuf<3.20.1,>=3.19.5 (from versions: none)
ERROR: No matching distribution found for protobuf<3.20.1,>=3.19.5
可能换了国内的镜像源,所以只需要指定装包路径(源)即可
pip install -r requirements.txt -i https://pypi.Python.org/simple/
报错 2
ImportError: Using SOCKS proxy, but the 'socksio' package is not installed. Make sure to install httpx using `pip install httpx[socks]`.
因为在命令行设置了“科学上网”,关掉即可
# 因为我设置的是临时的,所以在命令行输入如下代码即可
unset http_proxy
unset https_proxy
报错 3
RuntimeError: CUDA out of memory. Tried to allocate 128.00 MiB (GPU 0; 7.93 GiB total capacity; 7.40 GiB already allocated; 53.19 MiB free; 7.40 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:
# int4精度加载,需要6G显存
# web_demo.py
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(4).cuda()
报错 4
RuntimeError: Library cudart is not initialized
用conda管理的环境,此时应该是cudatoolkit有问题,参考此issues
# 使用conda安装cudatoolkit
conda install cudatoolkit=11.3 -c nvidia
报错 5 (windows 系统)
# ModuleNotFoundError: No module named 'chardet'
# ImportError: cannot import name 'COMMON_SAFE_ASCII_CHARACTERS' from 'charset_normalizer.constant' (C:\Users\123\miniconda3\envs\chatglm6b\lib\site-packages\charset_normalizer\constant.py)
pip install chardet
# 仍然报错
# AttributeError: partially initialized module 'charset_normalizer' has no attribute 'md__mypyc' (most likely due to a circular import)
pip install --force-reinstall charset-normalizer==3.1.0
CPU 占用过高的或者GPU显存不够都可能被killed 掉
量化模型加载方式
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).quantize(8).half().cuda()
应该改成
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().quantize(8).cuda()
更省显存
局限性
由于ChatGLM-6B的小规模,其能力仍然有许多局限性。以下是目前发现的一些问题:
- 模型容量较小:6B的小容量,决定了其相对较弱的模型记忆和语言能力。在面对许多事实性知识任务时,ChatGLM-6B可能会生成不正确的信息;它也不擅长逻辑类问题(如数学、编程)的解答。
- 产生有害说明或有偏见的内容:ChatGLM-6B只是一个初步与人类意图对齐的语言模型,可能会生成有害、有偏见的内容。(内容可能具有冒犯性,此处不展示)
- 英文能力不足:ChatGLM-6B 训练时使用的指示/回答大部分都是中文的,仅有极小一部分英文内容。因此,如果输入英文指示,回复的质量远不如中文,甚至与中文指示下的内容矛盾,并且出现中英夹杂的情况。
- 易被误导,对话能力较弱:ChatGLM-6B 对话能力还比较弱,而且 “自我认知” 存在问题,并很容易被误导并产生错误的言论。例如当前版本的模型在被误导的情况下,会在自我认知上发生偏差。
不过 GLM 团队也坦言,整体来说 ChatGLM 距离国际顶尖大模型研究和产品(比如 OpenAI 的 ChatGPT 及下一代 GPT 模型)还存在一定的差距。该团队表示,将持续研发并开源更新版本的 ChatGLM 和相关模型。“欢迎大家下载 ChatGLM-6B,基于它进行研究和(非商用)应用开发。GLM 团队希望能和开源社区研究者和开发者一起,推动大模型研究和应用在中国的发展。”
参考
THUDM/ChatGLM-6B
ChatGLM-Tuning
ptuning/README.md
LLMs入门实战篇(二)——清华大学开源中文版ChatGLM-6B模型微调实战
ChatGLM-6B (介绍相关概念、基础环境搭建及部署)
学习实践ChatGLM-6B(部署+运行+微调)
LLMs九层妖塔(第一层 ChatGLM-6B)——ChatGLM-6B模型初体验
LLMs九层妖塔——第一层 ChatGLM学习实战-闯关笔记
torch install
试用宝典-阿里云开发者社区-云计算-阿里云 (aliyun.com)