简析Linux内核中的各种锁:信号量/互斥锁/读写锁/原子锁/自旋锁/内存屏障等

news2024/9/27 19:24:12

首先得搞清楚,不同锁的作用对象不同。
下面分别是作用于临界区CPU内存cache 的各种锁的归纳:
在这里插入图片描述

一、atomic原子变量/spinlock自旋锁 — —CPU

既然是锁CPU,那就都是针对多核处理器或多CPU处理器。单核的话,只有发生中断会使任务被抢占,那么可以进入临界区之前先关中断,但是对多核CPU光关中断就不够了,因为对当前CPU关了中断只能使得当前CPU不会运行其它要进入临界区的程序,但其它CPU还是可能执行进入临界区的程序。

原子变量:在x86多核环境下,多核竞争数据总线的时候,提供Lock指令锁住总线,保证“读-修改-写”操作在芯片级的原子性。这个好说,我们一般对某个被多线程会访问的变量设置为atomic类型的即可,比如atomic_int x;atomic<int> x;

自旋锁:
当一个线程在获取锁的时候,如果锁已经被其它线程获取,那么该线程将循环等待,然后不断的判断锁是否能够被成功获取。使用实例如下:

#include <linux/spinlock.h>
// 定义自旋锁
spinlock_t my_lock;

void my_function(void)
{
    spin_lock(&my_lock);
    // 访问共享资源的操作
    spin_unlock(&my_lock);
}

互斥锁中,要是当前线程没拿到锁,就会出让CPU;而自旋锁中,要是当前线程没有拿到锁,当前线程在CPU上忙等待直到锁可用,这是为了保证响应速度更快。但是这种线程多了,那意味着多个CPU核都在忙等待,使得系统性能下降。
因此一定不能自旋太久,所以用户态编程里用自旋锁保护临界区的话,这个临界区一定要尽可能小,锁的粒度得尽可能小。

为什么自旋锁的响应速度会比互斥锁更快?

在小林coding中说到,自旋锁是通过 CPU 提供的 CAS 函数(Compare And Swap),在「用户态」完成加锁和解锁操作,不会主动产生线程上下文切换,所以相比互斥锁来说,会快一些,开销也小一些。
而互斥锁则不是,前面说互斥锁加锁失败,线程会出让CPU,这个过程其实是由内核来完成线程切换的,因此加锁失败时,1)首先从用户态切换至内核态,内核会把线程的状态从「运行」状态设置为「睡眠」状态,然后把 CPU 切换给其他线程运行;2)当互斥锁可用时,之前「睡眠」状态的线程会变为「就绪」状态(要进入就绪队列了),之后内核会在合适的时间,把 CPU 切换给该线程运行
然后返回用户态。
这个过程中,不仅有用户态到内核态的切换开销,还有两次线程上下文切换的开销。
线程的上下文切换主要是线程栈、寄存器、线程局部变量等。
而自旋锁在当前线程获取锁失败时不会进行线程的切换,而是一直循环等待直到获取锁成功。因此,自旋锁不会切换至内核态,也没有线程切换开销。
所以如果这个锁被占有的时间很短,或者说各个线程对临界区是快进快出,那么用自旋锁是开销最小的!
自旋锁的缺点前面也说了,就是如果自旋久了或者自旋的线程数量多了,CPU的利用率就下降了,因为上面执行的每个线程都在忙等待— —占用了CPU但什么事都没做。

二、信号量/互斥锁 — —临界区

信号量:
信号量(信号灯)本质是一个计数器,是描述临界区中可用资源数目的计数器。
信号量为3,表示可用资源为3。加入初始信号量为3,某时刻信号量为1,说明可用资源数为1,那么有2个进程/线程在使用资源或者说有两个资源被消耗了(具体资源是什么得看具体情况)。进程对信号量有PV操作,P操作就是进入共享资源区前-1,V操作就是离开共享资源后+1(这个时候信号量就表明还可以允许多少个进程进入该临界区)。
信号量进行多线程通信编程的时候,往往初始化信号量为0,然后用两个函数做线程间同步:
sem_wait():等待信号量,如果信号量的值大于0,将信号量的值减1,立即返回。 如果信号量的值为0,则线程阻塞。
sem_post():释放资源,信号量+1 ,相当于unlock,这样执行了sem_wait()的线程就不阻塞了。

要注意:信号量本身也是个共享资源,它的++操作(释放资源)和--操作(获取资源)也需要保护。其实就是用的自旋锁保护的。如果有中断的话,会把中断保存到eflags寄存器,待操作完成,就去该寄存器上读取,然后执行中断。

struct semaphore {
     spinlock_t lock; // 自旋锁
     unsigned int count;
     struct list_head wait_list;
};

互斥锁:
信号量的话表示可用资源的数量,是允许多个进程/线程在临界区的。但是互斥锁不是,它的目的就是只让一个线程进入临界区,其余线程没拿到锁,就只能阻塞等待。线程互斥的进入临界区,这就是互斥锁名字由来。
另外提一下std::timed_mutex睡眠锁,它和互斥锁的区别是:
互斥锁中,没拿到锁的线程就一直阻塞等待,而睡眠锁则是设置一定的睡眠时间比如2s,线程睡眠2s,如果过了之后还没拿到锁,那就放弃拿锁(可以输出获取锁失败),如果拿到了,那就继续做事。比如 用成员函数try_lock_for()

std::timed_mutex g_mutex;
//先睡2s再去抢锁
if(g_mutex.try_lock_for(std::chrono::seconds(2)))){
	// do something
}
else{
	// 没抢到
	std::cout<<"获取锁失败";
}

三、读写锁/抢占 — —临界区

读写锁:
用于读操作比写操作更频繁的场景,让读和写分开加锁,这样可以减小锁的粒度,提高程序的性能。
它允许多个线程同时读取共享资源,但只允许一个线程写入共享资源。这可以提高并发性能,因为读操作通常比写操作频繁得多。读写锁这种就属于高阶锁了,它的实现就可以用自旋锁。

抢占:
抢占必须涉及进程上下文的切换,而中断则是涉及中断上下文的切换。
内核从2.6开始就支持内核抢占,之前的内核不支持抢占,只要进程在占用CPU且时间片没用完,除非有中断,否则它就能一直占用CPU
抢占的情况:
比如某个优先级高的任务(进程),因为需要等待资源,就主动让出CPU(又或者因为中断被打断了),然后低优先级的任务先占用CPU,当资源到了,内核就让该优先级高的任务抢占那个正在CPU上跑的任务。也就是说,当前的优先级低的进程跑着跑着,时间片没用完,也没发生中断,但是自己被踢掉了。
为了支持内核抢占,内核引入了preempt_count字段,该计数初始值为0,每当使用锁时+1,释放锁时-1。当preempt_count为0时,表示内核可以安全的抢占,大于0时,则禁止内核抢占

Per-CPU— —作用于cache
per-cpu变量用于解决各个CPU里L2 cache和内存间的数据不一致性。

四、RCU机制/内存屏障 — —内存

RCU机制是read copy update,即读 复制 更新
和读写锁一样,RCU机制也是允许多个读者同时读,但更新数据的时候,需要先复制一份副本,在副本上完成修改,然后再一次性地替换旧数据。
比如链表里修改某个节点的数据,先拷贝该节点出来,修改里面的值,然后把节点前的指针指向拷贝出的节点,参考链接
在这里插入图片描述
等到旧数据没有人要读的时,就把该内存回收。
所以RCU机制的核心有两个:1)复制后更新;2)延迟回收内存
有RCU机制的话,读写就不需要做同步,也不会发生读写竞争了,因为读者是对原来的数据进行读,而写者是对拷贝出来的那份内存进行修改,读写可以并行
他们的读写是根据内存的指针来进行的,写者写完之后,就把旧读者的指针赋值为新的数据的指针,指针的赋值操作是原子的,这样新的读者将访问新数据。
旧内存由一个线程专门负责回收。

内存屏障:
内存屏障则是用于控制内存访问顺序,确保指令的执行顺序符合预期。
因为代码往往不是看我们写的这种顺序被执行的,它有两个层面的乱序:
1)编译器层面的。因为编译器的优化往往会对代码的汇编指令进行重排,参考博客
2)CPU层面的。多 CPU 间存在内存乱序访问的情况。
内存屏障就是让编译器或CPU对内存的访问有序。

编译时的乱序访问:

int x, y, r;
void f()
{
    x = r;
    y = 1;
}

开了优化选项后编译,得到的汇编可能是y = 1先执行,再x =r执行。可以用g++ -O2 -S test.cpp生成汇编代码,查看开了-O2优化后的汇编,参考文章:
我们可以使用内核提供的宏函数barrier()来避免编译器的这种乱序:

#define barrier() __asm__ __volatile__("" ::: "memory")
int x, y, r;
void f()
{
	x = r;
	__asm__ __volatile__("" ::: "memory");
	y = 1;
}

或者将涉及到的相关变量x和y用volatile关键字修饰:

volatile int x, y;

注意,C++里的volatile关键字只能避免编译期的指令重排,对于多CPU的指令重排不起作用,所以实际上代码真正运行的时候,可能又是乱序的。而Java的volatile关键字好像具有编译器、CPU两个层面的内存屏障作用。

多CPU乱序访问内存:
在单 CPU 上,不考虑编译器优化导致乱序的前提下,多线程执行不存在内存乱序访问的问题。因为单个CPU获取指令是有序的(队列FIFO),返回指令执行的结果至寄存器也是有序的(也是通过队列)
但是在多CPU处理器中,因为每个 CPU 都存有 cache,当数据x第一次被一个 CPU 获取时,x显然不在 该CPU 的 cache 中(这就是 cache miss)。 cache miss发生那意味着 CPU 需要从内存中获取数据,然后数据x将被加载到 CPU 的 cache 中,这样后续就能直接从 cache 上快速访问。
当某个 CPU 进行写操作时,它必须确保其他的 CPU 已经将数据x从它们的 cache 中移除(以便保证一致性),只有在移除操作完成后此 CPU 才能安全的修改数据。
显然,存在多个 cache 时,我们必须通过 cache 的一致性协议来避免数据不一致的问题,而这个通讯的过程就可能导致乱序访问的出现。
CPU级别的内存屏障有三种:

  1. 通用 barrier,保证读写操作都有序的,mb() 和 smp_mb() // mb即memory barrier
  2. 写操作 barrier,仅保证写操作有序的,wmb() 和 smp_wmb()
  3. 读操作 barrier,仅保证读操作有序的,rmb() 和 smp_rmb()

上述这些函数也是有宏定义的比如mb(),用在上述的编译期间乱序的例子中就是加个mfence

#define mb() _asm__volatile("mfence":::"memory")
void f()
{
	x = 1;
	__asm__ __volatile__("mfence" ::: "memory");
	r1 = y;
}
// GNU中的内存屏障#define mfence() _asm__volatile_("mfence": : :"memory")

注意,所有的 CPU级别的 Memory Barrier(除了数据依赖 barrier 之外)都隐含了编译器 barrier。

而且,实际上很多线程同步机制,都在底层有内存屏障作为支撑,比如原子锁自旋锁都是依赖CPU提供的CAS操作实现。CAS即Compare and Swap,它的基本思想是
在多线程环境下,如果需要修改共享变量的值,先读取该变量的值,然后修改该变量的值,最后将新值与旧值进行比较,如果相同,则修改成功,否则修改失败,需要重新执行该操作。
在实现CAS操作时,需要使用内存屏障来保证操作的顺序和一致性。例如,在Java中,使用Atomic类的compareAndSet方法实现CAS操作时,会自动插入内存屏障来保证操作的正确性。

对于应用层的编程而言,C++11引入了内存模型,它确保了多线程程序中的同步和一致性。内存屏障(CPU级别)就是内存模型的一部分,用于确保特定的内存操作顺序,X86-64下仅支持一种指令重排:Store-Load ,即读操作可能会重排到写操作前面
内存屏障有两种类型:store和load,使用示例如下:

// store屏障 
std::atomic<int> x; 
x.store(1, std::memory_order_release); // store屏障确保之前的写操作在之后的写操作之前完成

// load屏障 
std::atomic<int> y; 
int val = y.load(std::memory_order_acquire); // load屏障确保之前的读操作在之后的读操作之前完成

CPU级别的内存屏障除了保证指令顺序外,还要保证数据的可见性,不可见就会导致数据的不一致性。
所以上述代码中也用到了acquire和release语义分别对读和写设置屏障:

acquire:保证acquire后的读写操作不会发生在acquire动作之前
release:保证release前的读写操作不会发生在release动作之后

除了上面的atomic的load和store,C++11还提供了单独的内存屏障函数std::atomic_thread_fence,其用法和上述的类似:

#include <atomic>
std::atomic_thread_fence(std::memory_order_acquire);
std::atomic_thread_fence(std::memory_order_release);

五、内核中使用这些锁的示例

进程调度:内核锁用于保护调度器的数据结构,以避免多个CPU同时修改它们而导致错误。

// 自旋锁
spin_lock(&rq->lock); 
... 
spin_unlock(&rq->lock);

文件系统:内核锁用于保护文件系统的元数据,如inode、dentry等数据结构,以避免多个进程同时访问它们而导致错误。

spin_lock(&inode->i_lock); 
... 
spin_unlock(&inode->i_lock);

网络协议栈:内核锁用于保护网络协议栈的数据结构,如套接字、路由表等,以避免多个进程同时访问它们而导致错误。

read_lock(&rt_hash_lock); 
...
read_unlock(&rt_hash_lock);

内存管理:内核锁用于保护内存管理的数据结构,如页表、内存映射等,以避免多个进程同时访问它们而导致错误

spin_lock(&mm->page_table_lock);
... 
spin_unlock(&mm->page_table_lock);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/487448.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

生成C++工程的UML类图和类继承关系图

简介 在进行软件开发时&#xff0c;了解代码结构和关系、类之间的继承关系以及类内部的成员函数和变量定义是非常重要的。为此&#xff0c;我们可以使用Doxygen和Graphviz工具来生成UML类图和类集成关系图。 Doxygen是一个用于从注释的C源代码中生成文档的工具&#xff0c;支…

day01刷题记录

刷题 题目一分析题解 题目二分析题解 题目一 牛牛举办了一次编程比赛,参加比赛的有3*n个选手,每个选手都有一个水平值a_i.现在要将这些选手进行组队,一共组成n个队伍,即每个队伍3人.牛牛发现队伍的水平值等于该队伍队员中第二高水平值。 例如: 一个队伍三个队员的水平值分别是…

access数据库连接sqlserver实现远程连接

由于项目需要对接生产系统&#xff0c;但是生产系统使用的是access数据库&#xff08;这么老还在用&#xff0c;不知道咋想的&#xff09;&#xff0c;客户又想把项目部署到阿里云上&#xff0c;需要阿里云远程连接本地的access数据库&#xff08;心里一句MMP送上&#xff09;&…

Java——线程池详细讲解

文章目录 一、线程池一、线程池基础1.1 什么是线程池1.2 为什么使用线程池1.3 线程池有哪些优势1.4 应用场景 二、线程池使用2.1 Java内置线程池 ThreadPoolExecutor2.1.1 线程池的七个参数2.1.1.1 **int corePoolSize 核心线程数量**2.1.1.2 int maximumPoolSize 最大线程数2.…

假期后,野兔百科系统网站源码新版更新发布

这个是野兔百科系统中文版更新&#xff0c;这次更新了增加几个功能模块&#xff0c;几个已知的问题&#xff0c;修复系统部分功能。 系统名称&#xff1a;野兔百科系统 系统语言&#xff1a;中文版 系统源码&#xff1a;不加密&#xff0c;开源 系统开发&#xff1a;PHPMySQL …

尚融宝29-提现和还款

目录 一、提现 &#xff08;一&#xff09;需求 &#xff08;二&#xff09;前端 &#xff08;三&#xff09;后端 1、提现接口 2、回调接口 二、还款 &#xff08;一&#xff09;需求 &#xff08;二&#xff09;前端 &#xff08;三&#xff09;后端 1、还款接口 …

第一章:概述

1&#xff0c;因特网概述 1.网络、互联网和英特网 网络(Network)由若干结点(Node)和连接这些结点的链路(Link)组成。 多个网络还可以通过路由器互连起来&#xff0c;这样就构成了一个覆盖范围更大的网络&#xff0c;即互联网(或互连网)。因此&#xff0c;互联网是“网络的网络…

UE蓝图基础学习笔记(未完待续2023/05/03)

文章目录 一、项目创建1&#xff09;准备流程&#xff08;选择模板、开发语言、平台、质量等&#xff09;2&#xff09;界面介绍 二、Actor三、操作关卡对象&#xff08;旋转、移动、缩放和坐标轴&#xff09;四、常用快捷键五、运行游戏六、蓝图介绍七、蓝图节点八、操作事件图…

Azure DevOps Server 2022.0.1升级手册

Contents 1. 概述2. 操作方法 2.1 安装操作系统2.2 安装数据库2.4 还原数据2.3 安装和配置Azure DevOps Server 1. 概述 Azure DevOps Server 是微软公司经过20多年的持续开发&#xff0c;逐渐将需求管理、敏捷实践、源代码管理、持续集成等功能集成一体&#xff0c;实现应用软…

AutoHotKey简单入门

简单入门 快捷键 ^j::Send, Hello world! Return^j::代表CtrlJ&#xff0c;其中^代表Ctrl键 Send命令&#xff1a;在光标处输入Hello world! 也就是说&#xff0c;你按下CtrlJ后&#xff0c;将会输入字符串Hello world! Return即返回 热字串 ::ftw::Free the whales Ret…

抖音营销策略:新手如何利用抖音提高品牌曝光度

随着短规频平台的兴起&#xff0c;抖音作为其中的校佼者&#xff0c;已经成为了众多用户和企业的营销利器。但是&#xff0c;对于抖音新手而言&#xff0c;如何在这个平台上快速提升影响力呢?下面不若与众就为大家分享几个实用的方法。 一、关注抖音热门话题和潮流 抖音平台上…

力扣题库刷题笔记581-最短无序连续子数组

1、题目如下&#xff1a; 2、题解代码实现&#xff1a; 浅看题解&#xff0c;解题思路和本人接替思路一毛一样&#xff0c;奈何没有想到用双指针&#xff0c;在代码实现上也存在问题。当知道用双指针的时候&#xff0c;本题也变得相对简单。思路如下&#xff1a; a、输入仅存在…

Vue条件渲染v-if和v-show

条件渲染v-if和v-show <div id"root"><!-- <div v-if"true">v-if</div>--> <!-- <div v-show"true">v-show</div>--> n:{{n}}<button click"n">点击n</button><div v…

法规标准-UN R152标准解读

UN R152是做什么的&#xff1f; UN R152 全名为关于M1和N1型机动车高级紧急制动系统&#xff08;AEBS&#xff09;型式认证的统一规定&#xff0c;是联合国对于M1和N1型车辆AEBS系统认证的要求说明&#xff0c;当满足其要求内容时&#xff0c;才可通过联合国的认证&#xff0c…

数字化转型导师坚鹏:面向数字化转型的大数据顶层设计实践

面向数字化转型的大数据顶层设计实践 课程背景&#xff1a; 数字化背景下&#xff0c;很多企业存在以下问题&#xff1a; 不清楚大数据思维如何建立&#xff1f; 不清楚企业大数据分析方法&#xff1f; 不了解大数据应用成功案例&#xff1f; 课程特色&#xff1a; …

(转载)01.Matplotlib 图像结构-figure()axes设置

​概要&#xff1a;介绍matplotlib 绘制图像起手&#xff0c; figure() 的设置&#xff0c; axes() 的设置。主要的内容可移步最后部分的总结。 04 Matplotlib 总结 Matplotlib 提供了matplotlib.figure图形类模块&#xff0c;它包含了创建图形对象的方法。通过调用 pyplot 模…

Hive3面试基础

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、基本知识Hive31.表的类型和表的存储格式a)b)c)创建表i&#xff09;ii&#xff09; 2.表 二、使用步骤1.引入库2.读入数据 总结 前言 面试准备之Hive 回顾…

个人代码管理

项目描述&#xff1a; 在公司使用软件大家会经常使用GitLab进行代码管理&#xff0c;但是GitLab对于个人使用会有&#xff0c;操作相对复杂&#xff0c;且需要收费。GitHub的代码又都是开放的。经过上网查找和尝试&#xff0c;找到了一个可以日常用来保存自己代码的工具。&…

吴恩达和OpenAI的《面向开发者的ChatGPT提示工程》精华笔记

《ChatGPT Prompt Engineering for Developers》 面向开发者的ChatGPT提示工程 shadow 趁着假期&#xff0c;学习了prompt课程&#xff0c;做了一些精简和关键知识点的梳理&#xff0c;分享给大家。 LLM 可完成的任务 包括: 总结&#xff08;如总结用户评论&#xff09; 推断&a…

streamlit+pywebview,纯python以前后端形式写桌面应用

1、VSCode VSCode VSCode扩展&#xff1a;Python 2、配置PowerShell执行策略 以管理员身份运行PowerShell&#xff0c;运行Set-ExecutionPolicy RemoteSigned&#xff0c;并输入Y&#xff0c;回车确认 3、配置Python环境 只安装Python&#xff1a;华为镜像、阿里镜像、new…