点击蓝字
关注我们
AI TIME欢迎每一位AI爱好者的加入!
╱ 作者简介╱
承洲骏
上海交通大学硕士生,研究方向为代码生成,目前在香港大学余涛老师的实验室担任研究助理。
个人主页:http://blankcheng.github.io
谢天宝
香港大学一年级博士生,由余涛教授(主要)和孔令鹏教授指导,研究方向为代码生成和自然语言界面。
01
内容简介
尽管端到端(End-to-end)的方法最近在性能和易用性方面主导了NLP任务,但它们缺乏可解释性和鲁棒性。我们提出 Binder,一种无需训练的神经符号框架,可将任务输入映射到程序,它(1)允许将语言模型(LM)功能的统一API绑定到编程语言(例如SQL、Python)以扩展它的语法覆盖范围,从而大幅增加了可解决问题的范围,(2)采用LM作为程序解析器和API,在执行期间调用的底层模型,(3)只需要少量(10个左右)上下文中的示例注释,区别于与过去需要大量人工标注的程序生成方法。
具体来说,我们使用GPT-3 Codex作为LM。在生成程序阶段,Codex只需要少量的上下文范例,就能识别任务输入中原始编程语言无法回答的部分,正确生成API调用提示Codex解决无法回答的部分,并识别在与原始语法兼容的同时放置API调用的位置。在执行阶段,Codex可以在API调用中给出适当提示的情况下执行多种功能(例如,常识性问答、信息提取)。Binder 在WikiTableQuestions和TabFact数据集上取得了最先进的结果,且生成有利于人工调试的显式输出程序。以前最好的系统都是在数万个特定于任务的样本上进行微调的,而Binder仅使用数十个注释作为上下文范例,无需进行任何训练。
02
Background knowledge and paradigms
on solving NLP tasks
下图中表示的问题是:北美最畅销的不含化学成分的衬衫是哪一种?表中显示的内容类似于购物的一个真实场景,其中包含商品的标签以及一些细节性的描述,而蓝色字体描述的内容是无法从图中获取的,Binder的提出也就是为了解决这个问题。
下面先介绍一些常用的方法。第一种是最常见的End-to-End模式。由于大模型具有较强的自学能力,不需要进行训练,所以在End-to-End中,会将knowledge、question、answer等组合对以及测试样本一起作为输入,让GPT-3或者Codex直接生成答案。End-to-End的好处在于通用性很强,任何形式的formulation都可以作为输入,大模型都能够给出一个输出作为答案,但也存在一些缺点,比如可解释性差、可扩展性差、鲁棒性弱。
第二种是思维链方法,它与End-to-End的核心区别在于其在输出答案之前,会输出一段解释性的文字,描述推理的过程。这相对于End-to-End来讲提升了可解释性,但是可解释性是不高的,会存在一些错误,并且仍然会有可扩展性差、鲁棒性弱的问题。
第三种方法是Semantic parsing,在这个场景下也可以称之为Code generation,Binder是基于该方法的一种变形。它在给定自然语言输入的情况下生成可执行程序,生成有助于解决问题的中间结构,并提高神经方法的可解释性,而且可扩展性和鲁棒性也会更强。但是语义解析方法受限于其语法覆盖范围,无法解决需要外部知识或功能的问题。
03
Binder: Binding language models in
symbolic languages
所以我们根据上述方法存在的问题提出了Binder,Binder通过调用语言模型的API去解决语义分割解析方法中存在的局限,且相对于End-to-End和思维链方法具有更强的可解释性、可扩展性以及鲁棒性。
具体来介绍一下Binder的整个过程。Binder首先提示经过代码预训练的GPT-3模型 – Codex,将问题输入解析为Binder程序,其中Codex必须决定(1)输入中的哪些部分可以转换为目标编程语言(图1中以灰色突出显示的问题部分),(2)相应的任务API调用(例如,f(“北美?”;Made_in))提示Codex解决其他部分,以及(3)在哪里插入Binder程序中的API调用。接下来,Binder再次提示Codex生成任务API调用的答案(给定生成的任务提示),将生成的结果集成回编程语言。具体如图1,将API调用中的提示(如“北美?”)和数据(如Made_in列)送入Codex,输出为根据输入数据回答提示的新列(即,Made_in列中的国家是否来自北美)。最后,使用标准编程语言执行程序,得出最终答案。
相比传统的Semantic parsing方法,Binder基于大模型上下文学习的能力,只需要标注少量的样本就能取得很好的效果。
我们在实验中也做了很多定量的分析去判断Binder是否有效果及性能上的提升。我们选择的两个数据集是WikiTableQuestions (WikiTQ)和Table Fact Checking (TabFact)。WikiTQ需要复杂的表格推理技能来回答问题,存在一些WikiTQ问题无法用纯SQL回答,这要么是因为需要额外的知识,要么是因为SQL语法的覆盖范围有限。TabFact与WikiTQ的区别在于对于每一张表它都会给出一个陈述,一个陈述中有多个事实需要去验证,也就是说需要很复杂的推理步骤,并且也不能完全用符号语言来解决问题。
下图是我们的实验结果。我们的方法仅用到14个标注样本,相比已有的Finetuned的SOTA方法,性能的提升非常显著。与大模型的方法相比,相对于End-to-end以及普通的语义分割解析方法,在性能上都有明显的提升。这也就验证了最初提出Binder的研究动机,我们希望在需要SQL或者大模型的时候都能够便捷地融入各自的功能。
效果的提升大部分是源于program-unsolvable questions,即普通SQL和Python无法解决的问题,就需要一些额外的知识或者其他模态的推理。我们将这部分的结果拆解开看,在下图中可以看到Codex Binder在程序无法解决的问题上明显优于Codex SQL 10.1%,所以这是性能主要提升的关键。
除了性能优势以外,我们也探索了很多binder其他的优势。
首先是可解释性,显式的程序可以协助研究者去进行人工调试和错误分析,这一点End-to-End是做不到的。
第二点是可扩展性和鲁棒性。我们通过提示Codex用相关的行填充原始表,扩展成100、200和500行的表,并人工修改相应的问题和答案。我们发现随着表大小的增加,End-to-end的性能急剧下降,而Binder始终优于它,性能仅略有下降。当存在与问题相关内容相似的干扰因素时,End-to-end方法对嘈杂的输入更脆弱,更容易被相似的文本和数字混淆。
04
Extending Binder to more diverse
tasks and domains
我们尝试将Binder扩展到不同的领域和语言。首先是多模态的输入,我们使用的数据集是Multi-modal QA,它的输入包括表格、文本及图片。在这样的场景下,我们的方法几乎可以达到之前的SOTA水平,如果使用更好的模型作为语言模型API的话,性能会提升更多。
我们将Binder扩展到不同的语言——Python中。我们可以看到他在 problem-unsolved部分的提升也是很显著的。
我们希望(1)Binder在之后可以被利用到让大家更熟悉的领域或者符号、编程语言中(2)Binder能够集成更多的语言或视觉模型功能;(3)Binder被应用到更多的领域和任务当中。
最后我们简单绘制了将Binder应用到新领域或新任务的流程图,一共分为5个部分。其中,需要耗费人工的,只有两点。第一,需要人为标注少量Binder的程序;第二,需要用户对任务较熟悉,能够根据自己的经验挑选所用到的语言模型的API。
整理:陈研
审核:承洲骏 谢天宝
提
醒
点击“阅读原文”跳转到1:19:01可以查看回放哦!
往期精彩文章推荐
记得关注我们呀!每天都有新知识!
关于AI TIME
AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。
迄今为止,AI TIME已经邀请了1000多位海内外讲者,举办了逾550场活动,超600万人次观看。
我知道你
在看
哦
~
点击 阅读原文 查看回放!