🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍖 原作者:K同学啊|接辅导、项目定制
● 难度:夯实基础⭐⭐
● 语言:Python3、Pytorch3
● 时间:5月1日-5月6日
🍺要求:
1、yolov5训练数据集
目录
- 1、 在yolov5文件夹下面添加paper_data文件夹
- 2、 准备数据集
- 3、 划分数据集
- 4、 生成数据索引文件
- 5、编辑.yaml文件
- 6、运行train.py文件 开始训练
1、 在yolov5文件夹下面添加paper_data文件夹
2、 准备数据集
image文件夹下存放所有的图片文件
annotation文件夹下存放所有的label文件
两个文件夹内的图片文件名和label文件名一一对应
3、 划分数据集
在paper_data文件夹下 创建一个split_train_val.py
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
# xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='annotations', type=str, help='input xml label path')
# 数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1.0
train_percent = 1.0
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
该脚本文件的功能是划分训练集/测试集/验证集的数据比例。
通过调整参数trainval_percent和train_percent 的数值可以调整各数据集的比例。
脚本执行完毕后,会在当前目录下生产ImageSets/Main/子文件夹,内有包含划分好的数据集信息的四个txt文件。
4、 生成数据索引文件
在paper_data文件夹下创建voc_label.py
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["banana", "snake fruit", "dragon fruit", "pineapple"]
abs_path = os.getcwd()
print(abs_path)
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('./annotations/%s.xml' % (image_id), encoding='UTF-8')
out_file = open('./labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('./labels/'):
os.makedirs('./labels/')
image_ids = open('./ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('./%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write(abs_path + '/images/%s.png\n' % (image_id)) # 注意你的图片格式,如果是.jpg记得修改
convert_annotation(image_id)
list_file.close()
该脚本文件的主要功能是生成训练集/测试集/验证集的数据索引文件train.txt/test.txt/val.txt,并归一化标注信息(labels文件夹下)。
根据images文件夹下的图片的后缀格式调整脚本中的图片文件后缀。
脚本执行完毕后,还会在当前目录下生产labels子文件夹,内有归一化后的标注文件(txt文件)。
5、编辑.yaml文件
类别数和类别名要和数据集以及voc_label.py脚本内的参数一致。
在data文件夹下创建ab.yaml