边缘人工智能——nanodet模型实践指引,从标注数据集到实现部署文件

news2025/1/11 18:43:55

内容概述

        首先获得一个合适的nanodet模型版本,配置nanodet适用的环境,然后对网上公开的生数据集进行重新标注,配置nanodet并进行训练,.pth到.onnx的模型转化及简化,编写推理文件。

        文章着重于实践方向指引,对于其中细节需读者自行完成。

为什么使用nanodet

        该模型虽然检测精度较低,但是其极轻量化、推理快速的特点非常适合放在算力及内存较低的边缘人工设备上。

        这个是nanodet作者在github上的开源地址https://github.com/RangiLyu/nanodet,没有科学上网工具的话可以访问镜像站https://gitcode.net/mirrors/RangiLyu/nanodet.git。

选择合适的nanodet版本

        由于我的显卡是GTX1650,算力较低,无法使用最新版的nanodet所使用的部分包,需要换一个老版本的nanodet,所以我使用的是最后一次更新于2021年5月的版本。

配置nanodet环境及进行训练

        这一部分其实仔细阅读README.md的Demo到How to Train的部分就能整出来,安装的话没啥必要,直接修改源代码就行了。

配置nanodet适用的环境

        我使用Anaconda进行环境创建,Anaconda是一个环境管理工具,可以理解为配置python解释器的工具,和使用pycharm自动安装相比,可以更好的对环境及包版本进行管理,相当方便,没有这个的同学可以在站内搜索相关安装及配置教程,也可以就通过pycharm进行自动的包安装。

        在Anaconda上创建一个python==3.9.16的环境,使用activate <env>激活该环境后,将下载到的nanodet源代码中的requirement.txt复制下来,使用pip install <package>的命令尝试安装所有包,其中注意把requirement.txt中的torch和torchvision删去,因为安装torch和torchvision一定注意要与自己的CUDA版本匹配(如果使用pip自动安装会安装最新的,大概率是不和自己的CUDA匹配),并且这两个组件也要按照官网(pytorch官网)的推荐去装(用官网给的指令一遍装了就对了,注意torchvision==0.11.0+cu111只有linux版本,所以不要安装他以及他对应的torch)。

        可以通过查看pycharm在换上了新配置的conda环境后是否提示缺少包及运行demo.py(nanodet-main\demo\demo.py)检查自己是否正确搭建环境,最后demo.py能正常运行就说明环境配置好了,注意parse_args()的参数是命令行参数,如果验证的话可以在Anaconda Prompt激活环境后cd到模型文件夹内的demo.py按照README.md的demo部分提供的参数进行验证即可。

        这一块可以看下这位博主的验证部分http://t.csdn.cn/XGiuU

配置环境的详细步骤

        以下是我在搭建环境时做的记录,可供参考,直接搬到自己的机器里很可能出问题,请按照自己的系统环境进行配置。

配置:win10,1650显卡

conda 22.9.0
cuda 11.1 (指令nvcc -V)

先在anaconda prompt创建一个python==3.9.16 的环境

使用conda create -n py_3.12 Cython matplotlib numpy omegaconf=2.0.1 onnx onnx-simplifier opencv-python pyaml pycocotools pytorch-lightning=1.9.0 tabulate tensorboard termcolor torch=1.10 torchmetrics torchvision tqdm python=3.9
尝试安装所有包

这部分conda没用自动找到,需要手动挨个安装
  - onnx-simplifier
  - opencv-python
  - pytorch-lightning=1.9.0
  - torch=1.10
  - omegaconf==2.0.1
  - pycocotools

使用以下指令尝试安装:
conda install conda install -c necla-ml onnx-simplifier --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

因为可能需要用pip,所以将这个现在建好的虚拟环境克隆,在新的克隆环境内继续安装包的操作
(克隆指令 conda create -n py_3.12_new --clone py_3.12 )

使用以下指令尝试安装:
pip install opencv-python
conda install -c https://conda.anaconda.org/menpo opencv
conda install -c conda-forge pytorch-lightning
pip install omegaconf==2.0.1
conda install -c conda-forge pycocotools

安装torch和torchvision一定注意要与自己的CUDA版本匹配,并且这两个组件也要按照官网的推荐去装(用官网给的指令一遍装了就对了,注意torchvision==0.11.0+cu111只有linux版本,所以不要安装他以及他对应的torch)

我的torch版本是v1.9.1(根据自己的电脑版本下载)
我使用的安装指令:
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

如果遇到死机
原因是之前下载了pytorch,但是由于权限原因没有安装pytorch,需要做两点改动,在pip install之间加上--no-cache-dir,命令的最后加上--user
pip --no-cache-dir install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html --user


另外注意,我转发的那个代码需要GPU加速,如果没有GPU需要修改代码或者下载README.MD最尾端给出的cpu版本的地址
代码中给出的指令,即
'''目标检测-图片'''
python detect_main.py image --config ./config/nanodet-m.yml --model model/nanodet_m.pth --path  street.png

'''目标检测-视频文件'''
python detect_main.py video --config ./config/nanodet-m.yml --model model/nanodet_m.pth --path  test.mp4

'''目标检测-摄像头'''
python detect_main.py webcam --config ./config/nanodet-m.yml --model model/nanodet_m.pth --path  0
是命令行指令,在虚拟环境下cd到模型所在包将指令复制到命令行中就可以运行了(我测试不了第二个,应该是不能用)

我的conda源等信息:
conda info

     active environment : py_3.12_new
    active env location : D:\ANACONDA\envs\py_3.12_new
            shell level : 2
       user config file : C:\Users\lenovo\.condarc
 populated config files : C:\Users\lenovo\.condarc
          conda version : 22.9.0
    conda-build version : 3.22.0
         python version : 3.9.13.final.0
       virtual packages : __cuda=11.2=0
                          __win=0=0
                          __archspec=1=x86_64
       base environment : D:\ANACONDA  (read only)
      conda av data dir : D:\ANACONDA\etc\conda
  conda av metadata url : None
           channel URLs : https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/noarch
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/win-64
                          https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/noarch
          package cache : D:\ANACONDA\pkgs
                          C:\Users\lenovo\.conda\pkgs
                          C:\Users\lenovo\AppData\Local\conda\conda\pkgs
       envs directories : C:\Users\lenovo\.conda\envs
                          D:\ANACONDA\envs
                          C:\Users\lenovo\AppData\Local\conda\conda\envs
               platform : win-64
             user-agent : conda/22.9.0 requests/2.28.1 CPython/3.9.13 Windows/10 Windows/10.0.19044
          administrator : False
             netrc file : None
           offline mode : False


我的虚拟环境包目录:
conda list
# packages in environment at D:\ANACONDA\envs\py_3.12_new:             
#                                                                      
# Name                    Version                   Build  Channel     
absl-py                   1.3.0            py39haa95532_0    defaults  
aiohttp                   3.8.3            py39h2bbff1b_0    defaults  
aiosignal                 1.2.0              pyhd3eb1b0_0    defaults  
async-timeout             4.0.2            py39haa95532_0    defaults  
attrs                     22.1.0           py39haa95532_0    defaults  
blas                      1.0                         mkl    defaults  
blinker                   1.4              py39haa95532_0    defaults  
brotli                    1.0.9                h2bbff1b_7    defaults  
brotli-bin                1.0.9                h2bbff1b_7    defaults  
brotlipy                  0.7.0           py39h2bbff1b_1003    defaults
ca-certificates           2023.01.10           haa95532_0    defaults  
cachetools                4.2.2              pyhd3eb1b0_0    defaults  
certifi                   2022.12.7        py39haa95532_0    defaults
cffi                      1.15.1           py39h2bbff1b_3    defaults
charset-normalizer        2.0.4              pyhd3eb1b0_0    defaults
click                     8.0.4            py39haa95532_0    defaults
colorama                  0.4.6            py39haa95532_0    defaults
contourpy                 1.0.5            py39h59b6b97_0    defaults
cryptography              39.0.1           py39h21b164f_0    defaults
cycler                    0.11.0             pyhd3eb1b0_0    defaults
cython                    0.29.33          py39hd77b12b_0    defaults
flit-core                 3.6.0              pyhd3eb1b0_0    defaults
fonttools                 4.25.0             pyhd3eb1b0_0    defaults
freetype                  2.12.1               ha860e81_0    defaults
frozenlist                1.3.3            py39h2bbff1b_0    defaults
future                    0.18.3           py39haa95532_0    defaults
giflib                    5.2.1                h8cc25b3_3    defaults
glib                      2.69.1               h5dc1a3c_2    defaults
google-auth               2.6.0              pyhd3eb1b0_0    defaults
google-auth-oauthlib      0.4.4              pyhd3eb1b0_0    defaults
grpcio                    1.42.0           py39hc60d5dd_0    defaults
gst-plugins-base          1.18.5               h9e645db_0    defaults
gstreamer                 1.18.5               hd78058f_0    defaults
icu                       58.2                 ha925a31_3    defaults
idna                      3.4              py39haa95532_0    defaults
importlib-metadata        4.11.3           py39haa95532_0    defaults
importlib_resources       5.2.0              pyhd3eb1b0_1    defaults
intel-openmp              2021.4.0          haa95532_3556    defaults
jpeg                      9e                   h2bbff1b_1    defaults
kiwisolver                1.4.4            py39hd77b12b_0    defaults
lerc                      3.0                  hd77b12b_0    defaults
libbrotlicommon           1.0.9                h2bbff1b_7    defaults
libbrotlidec              1.0.9                h2bbff1b_7    defaults
libbrotlienc              1.0.9                h2bbff1b_7    defaults
libclang                  12.0.0          default_h627e005_2    defaults
libdeflate                1.17                 h2bbff1b_0    defaults
libffi                    3.4.2                hd77b12b_6    defaults
libiconv                  1.16                 h2bbff1b_2    defaults
libogg                    1.3.5                h2bbff1b_1    defaults
libpng                    1.6.39               h8cc25b3_0    defaults
libprotobuf               3.20.3               h23ce68f_0    defaults
libtiff                   4.5.0                h6c2663c_2    defaults
libuv                     1.44.2               h2bbff1b_0    defaults
libvorbis                 1.3.7                he774522_0    defaults
libwebp                   1.2.4                hbc33d0d_1    defaults
libwebp-base              1.2.4                h2bbff1b_1    defaults
libxml2                   2.9.14               h0ad7f3c_0    defaults
libxslt                   1.1.35               h2bbff1b_0    defaults
lz4-c                     1.9.4                h2bbff1b_0    defaults
markdown                  3.4.1            py39haa95532_0    defaults
markdown-it-py            2.2.0                    pypi_0    pypi
markupsafe                2.1.1            py39h2bbff1b_0    defaults
matplotlib                3.7.0            py39haa95532_0    defaults
matplotlib-base           3.7.0            py39hf11a4ad_0    defaults
mdurl                     0.1.2                    pypi_0    pypi
mkl                       2021.4.0           haa95532_640    defaults
mkl-service               2.4.0            py39h2bbff1b_0    defaults
mkl_fft                   1.3.1            py39h277e83a_0    defaults
mkl_random                1.2.2            py39hf11a4ad_0    defaults
multidict                 6.0.2            py39h2bbff1b_0    defaults
munkres                   1.1.4                      py_0    defaults
ninja                     1.10.2               haa95532_5    defaults
ninja-base                1.10.2               h6d14046_5    defaults
numpy                     1.23.5           py39h3b20f71_0    defaults
numpy-base                1.23.5           py39h4da318b_0    defaults
oauthlib                  3.2.1            py39haa95532_0    defaults
onnx                      1.13.0           py39h9724e47_0    defaults
onnx-simplifier           0.4.17                   pypi_0    pypi
opencv-contrib-python     4.7.0.72                 pypi_0    pypi
opencv-python             4.7.0.72                 pypi_0    pypi
openssl                   1.1.1t               h2bbff1b_0    defaults
packaging                 22.0             py39haa95532_0    defaults
pcre                      8.45                 hd77b12b_0    defaults
pillow                    9.4.0            py39hd77b12b_0    defaults
pip                       23.0.1           py39haa95532_0    defaults
ply                       3.11             py39haa95532_0    defaults
protobuf                  3.20.3           py39hd77b12b_0    defaults
pyaml                     20.4.0             pyhd3eb1b0_0    defaults
pyasn1                    0.4.8              pyhd3eb1b0_0    defaults
pyasn1-modules            0.2.8                      py_0    defaults
pycocotools               2.0.4            py39h5d4886f_1    conda-forge
pycparser                 2.21               pyhd3eb1b0_0    defaults
pygments                  2.14.0                   pypi_0    pypi
pyjwt                     2.4.0            py39haa95532_0    defaults
pyopenssl                 23.0.0           py39haa95532_0    defaults
pyparsing                 3.0.9            py39haa95532_0    defaults
pyqt                      5.15.7           py39hd77b12b_0    defaults
pyqt5-sip                 12.11.0          py39hd77b12b_0    defaults
pysocks                   1.7.1            py39haa95532_0    defaults
python                    3.9.16               h6244533_1    defaults
python-dateutil           2.8.2              pyhd3eb1b0_0    defaults
python_abi                3.9                      2_cp39    conda-forge
pyyaml                    6.0              py39h2bbff1b_1    defaults
qt-main                   5.15.2               he8e5bd7_7    defaults
qt-webengine              5.15.9               hb9a9bb5_5    defaults
qtwebkit                  5.212                h3ad3cdb_4    defaults
requests                  2.28.1           py39haa95532_0    defaults
requests-oauthlib         1.3.0                      py_0    defaults
rich                      13.3.2                   pypi_0    pypi
rsa                       4.7.2              pyhd3eb1b0_1    defaults
setuptools                65.6.3           py39haa95532_0    defaults
sip                       6.6.2            py39hd77b12b_0    defaults
six                       1.16.0             pyhd3eb1b0_1    defaults
sqlite                    3.40.1               h2bbff1b_0    defaults
tabulate                  0.8.10           py39haa95532_0    defaults
tensorboard               2.10.0           py39haa95532_0    defaults
tensorboard-data-server   0.6.1            py39haa95532_0    defaults
tensorboard-plugin-wit    1.8.1            py39haa95532_0    defaults
termcolor                 2.1.0            py39haa95532_0    defaults
tk                        8.6.12               h2bbff1b_0    defaults
toml                      0.10.2             pyhd3eb1b0_0    defaults
torch                     1.9.1+cu111              pypi_0    pypi
torchaudio                0.9.1                    pypi_0    pypi
torchvision               0.10.1+cu111             pypi_0    pypi
tornado                   6.2              py39h2bbff1b_0    defaults
tqdm                      4.64.1           py39haa95532_0    defaults
typing-extensions         4.4.0            py39haa95532_0    defaults
typing_extensions         4.4.0            py39haa95532_0    defaults
tzdata                    2022g                h04d1e81_0    defaults
urllib3                   1.26.14          py39haa95532_0    defaults
vc                        14.2                 h21ff451_1    defaults
vs2015_runtime            14.27.29016          h5e58377_2    defaults
werkzeug                  2.2.2            py39haa95532_0    defaults
wheel                     0.38.4           py39haa95532_0    defaults
win_inet_pton             1.1.0            py39haa95532_0    defaults
wincertstore              0.2              py39haa95532_2    defaults
xz                        5.2.10               h8cc25b3_1    defaults
yaml                      0.2.5                he774522_0    defaults
yarl                      1.8.1            py39h2bbff1b_0    defaults
zipp                      3.11.0           py39haa95532_0    defaults
zlib                      1.2.13               h8cc25b3_0    defaults
zstd                      1.5.2                h19a0ad4_0    defaults

pip list
Package                   Version
------------------------- ------------
absl-py                   1.3.0
aiohttp                   3.8.3
aiosignal                 1.2.0
altgraph                  0.17.3
async-timeout             4.0.2
attrs                     22.1.0
blinker                   1.4
brotlipy                  0.7.0
cachetools                4.2.2
certifi                   2022.12.7
cffi                      1.15.1
charset-normalizer        2.0.4
click                     8.0.4
colorama                  0.4.6
coloredlogs               15.0.1
contourpy                 1.0.5
cryptography              39.0.1
cycler                    0.11.0
Cython                    0.29.33
flatbuffers               23.3.3
flit_core                 3.6.0
fonttools                 4.25.0
frozenlist                1.3.3
future                    0.18.3
google-auth               2.6.0
google-auth-oauthlib      0.4.4
grpcio                    1.42.0
humanfriendly             10.0
idna                      3.4
importlib-metadata        4.11.3
importlib-resources       5.2.0
kiwisolver                1.4.4
Markdown                  3.4.1
markdown-it-py            2.2.0
MarkupSafe                2.1.1
matplotlib                3.7.0
mdurl                     0.1.2
mkl-fft                   1.3.1
mkl-random                1.2.2
mkl-service               2.4.0
mpmath                    1.3.0
multidict                 6.0.2
munkres                   1.1.4
numpy                     1.23.5
oauthlib                  3.2.1
omegaconf                 2.0.1
onnx                      1.13.0
onnx-simplifier           0.4.17
onnxruntime               1.14.1
opencv-contrib-python     4.7.0.72
opencv-python             4.7.0.72
packaging                 22.0
pefile                    2023.2.7
Pillow                    9.4.0
pip                       23.0.1
ply                       3.11
protobuf                  3.20.3
pyaml                     20.4.0
pyasn1                    0.4.8
pyasn1-modules            0.2.8
pycocotools               2.0.4
pycparser                 2.21
Pygments                  2.14.0
pyinstaller               5.8.0
pyinstaller-hooks-contrib 2023.0
PyJWT                     2.4.0
pyOpenSSL                 23.0.0
pyparsing                 3.0.9
PyQt5                     5.15.7
PyQt5-sip                 12.11.0
pyreadline3               3.4.1
PySocks                   1.7.1
python-dateutil           2.8.2
pywin32-ctypes            0.2.0
PyYAML                    6.0
requests                  2.28.1
requests-oauthlib         1.3.0
rich                      13.3.2
rsa                       4.7.2
setuptools                65.6.3
sip                       6.6.2
six                       1.16.0
sympy                     1.11.1
tabulate                  0.8.10
tensorboard               2.10.0
tensorboard-data-server   0.6.1
tensorboard-plugin-wit    1.8.1
termcolor                 2.1.0
toml                      0.10.2
torch                     1.9.1+cu111
torchaudio                0.9.1
torchvision               0.10.1+cu111
tornado                   6.2
tqdm                      4.64.1
typing_extensions         4.4.0
urllib3                   1.26.14
Werkzeug                  2.2.2
wheel                     0.38.4
win-inet-pton             1.1.0
wincertstore              0.2
yarl                      1.8.1
zipp                      3.11.0

重新标注数据集

        使用labelimg,我拿他做了xml(一种标签格式)的重新标注,这个工具使用比较简单,缺点是没有批处理。注意标注的时候要把图片文件和xml标签文件放在一个文件夹内,而且两者的前缀名要一致,这样才会自动自动把已标注的标签框显示出来。

        具体可以看这位博主的文章http://t.csdn.cn/cegAT

配置nanodet准备进行训练

        查看README.md的How to Train,按照提示修改config并使用适合的train.py提示就好

        首先要修改config文件:

         我的数据集是xml格式的,所以选择修改nanodet_custom_xml_dataset.yml的config文件,有同学可能会问为啥这么多这都是啥,其实就是不同的nanodet子模型,可以看看Model Zoo挑选一个自己喜欢的。

         打开选好的config,按照README.md修改参数,这一部分也可以参照这位博主的训练部分http://t.csdn.cn/aVE2D,然后我再补充一些,其实可以用xml的数据集训练,拿nanodet_custom_xml_dataset.yml就行,应该是这位博主用的nanodet的版本还没更新出这个文件;“data:train:name:”不能随便修改,他表示了训练数据的数据格式,比如nanodet_custom_xml_dataset.yml的这一参数是xml_dataset;“schedule:device:gpu_ids”是GPU的数量,0表示1块GPU,如果你用的是服务器,把这个参数设置为服务器的GPU个数;“schedule:device:workers_per_gpu:”和“schedule:device:batchsize_per_gpu:”设置了每块GPU的工作量,要是显卡不太好就设置的小一点,大了会报错,比如我的1650设置的是1和36;“data:val:”里的"val"是验证集,一般和训练集不能重合。

        config设置好后就可以用train.py训练了,在我使用的这个版本单GPU使用tools下的train.py会报错,换成tools/deprecated/train.py进行训练就好了。

        训练时会先对数据集进行索引,然后进行训练,如果你看到他先是跳出一大串像是训练的代码然后过几秒突然报错可能是只完成了索引而在训练时出问题,按照报错检查下config,大概率是设置有问题。训练完成后会获得一个.pth文件(新版nanodet应该是生成.cpth),放在你在config里设置的sav_dir里。

.pth模型向.onnx转化及简化.onnx

        因为原代码只提供.cpth转.onnx,所以需要修改tools/export.py,核心函数使用torch.onnx.export()即可,不需要修改太多。

import os
import argparse
import torch
from nanodet.model.arch import build_model
from nanodet.util import Logger, cfg, load_config, load_model_weight


def generate_ouput_names(head_cfg):
    cls_names, dis_names = [], []
    for stride in head_cfg.strides:
        cls_names.append('cls_pred_stride_{}'.format(stride))
        dis_names.append('dis_pred_stride_{}'.format(stride))
    return cls_names + dis_names


def main(config, model_path, output_path, input_shape=(320, 320)):
    logger = Logger(-1, config.save_dir, False)
    model = build_model(config.model)
    checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage)
    load_model_weight(model, checkpoint, logger)

    dummy_input = torch.autograd.Variable(torch.randn(1, 3, input_shape[0], input_shape[1]))
    torch.onnx.export(model,
                      dummy_input,
                      output_path,
                      verbose=True,
                      keep_initializers_as_inputs=True,
                      opset_version=10)
    logger.log('finished exporting onnx ')

if __name__ =='__main__':
    cfg_path = r"D:\pythonProject\nanodet-main\config\nanodet_custom_xml_dataset.yml"   #config path
    model_path=r"D:\pythonProject\nanodet-main\workspace\nanodet_m_new_2\model_last.pth"
    out_path = r"D:\pythonProject\nanodet-main\workspace\nanodet_m_new_2\output_my.onnx"#output model path
    load_config(cfg,cfg_path)
    main(cfg,model_path,out_path,input_shape=(320,320) )#根据自己的输入尺寸修改

        转化后可以再使用onnx-simplifier简化,相关教程搜索这个包名就行,不过我的结果是简化前后没变化。

         这部分也可以查看这篇博文http://t.csdn.cn/kCHJ8,不过要付费。       

部署文件

        这部分这位博主写的非常好,大家可以先看他的http://t.csdn.cn/KfbnS,作者使用opencv-python==4.5.2.52进行了部署,所以部署环境只要是能满足opencv的要求就行了(不要用最新的版本,会报错,python版本和numpy跟着opencv装,我的python是3.9.16),作者实现了对于图片的检测,我在博主的基础上做了点修改,改为逐帧检测视频,下面两段代码分别是将结果保存到.json文件中及直接可视化

结果保存到.json

import cv2
import numpy as np
import argparse
classes = ['helmet', 'with_mask', 'reflective_clothes']
resultsW= []

class my_nanodet():
    def __init__(self,model, input_shape=320, prob_threshold=0.4, iou_threshold=0.3):
        self.classes = classes
        self.num_classes = len(self.classes)
        self.strides = (8, 16, 32)
        self.input_shape = (input_shape, input_shape)
        self.reg_max = 7
        self.prob_threshold = prob_threshold
        self.iou_threshold = iou_threshold
        self.project = np.arange(self.reg_max + 1)
        self.mean = np.array([103.53, 116.28, 123.675], dtype=np.float32).reshape(1, 1, 3)
        self.std = np.array([57.375, 57.12, 58.395], dtype=np.float32).reshape(1, 1, 3)
        self.net = cv2.dnn.readNet(model)

        self.mlvl_anchors = []
        for i in range(len(self.strides)):
            anchors = self._make_grid((int(self.input_shape[0] / self.strides[i]), int(self.input_shape[1] / self.strides[i])), self.strides[i])
            self.mlvl_anchors.append(anchors)
    def _make_grid(self, featmap_size, stride):
        feat_h, feat_w = featmap_size
        shift_x = np.arange(0, feat_w) * stride
        shift_y = np.arange(0, feat_h) * stride
        xv, yv = np.meshgrid(shift_x, shift_y)
        xv = xv.flatten()
        yv = yv.flatten()
        cx = xv + 0.5 * (stride-1)
        cy = yv + 0.5 * (stride - 1)
        return np.stack((cx, cy), axis=-1)
    def softmax(self,x, axis=1):
        x_exp = np.exp(x)
        # 如果是列向量,则axis=0
        x_sum = np.sum(x_exp, axis=axis, keepdims=True)
        s = x_exp / x_sum
        return s

    def _normalize(self, img):   ### c++: https://blog.csdn.net/wuqingshan2010/article/details/107727909
        img = img.astype(np.float32)
        img = (img - self.mean) / self.std
        return img
    def resize_image(self, srcimg, keep_ratio=True):
        top, left, newh, neww = 0, 0, self.input_shape[0], self.input_shape[1]
        if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
            hw_scale = srcimg.shape[0] / srcimg.shape[1]
            if hw_scale > 1:
                newh, neww = self.input_shape[0], int(self.input_shape[1] / hw_scale)
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                left = int((self.input_shape[1] - neww) * 0.5)
                img = cv2.copyMakeBorder(img, 0, 0, left, self.input_shape[1] - neww - left, cv2.BORDER_CONSTANT,
                                         value=0)  # add border
            else:
                newh, neww = int(self.input_shape[0] * hw_scale), self.input_shape[1]
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                top = int((self.input_shape[0] - newh) * 0.5)
                img = cv2.copyMakeBorder(img, top, self.input_shape[0] - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=0)
        else:
            img = cv2.resize(srcimg, self.input_shape, interpolation=cv2.INTER_AREA)
        return img, newh, neww, top, left
    def detect(self, srcimg):
        img, newh, neww, top, left = self.resize_image(srcimg)
        img = self._normalize(img)
        blob = cv2.dnn.blobFromImage(img)
        # Sets the input to the network
        self.net.setInput(blob)

        # Runs the forward pass to get output of the output layers
        outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
        det_bboxes, det_conf, det_classid = self.post_process(outs)

        drawimg = srcimg.copy()
        ratioh,ratiow = srcimg.shape[0]/newh,srcimg.shape[1]/neww

        anchor = []
        label  = []
        #修改为.json写入 #det_conf[i]是置信度
        for i in range(det_bboxes.shape[0]):

            xmin, ymin, xmax, ymax = max(int((det_bboxes[i,0] - left) * ratiow), 0), max(int((det_bboxes[i,1] - top) * ratioh), 0), min(
                int((det_bboxes[i,2] - left) * ratiow), srcimg.shape[1]), min(int((det_bboxes[i,3] - top) * ratioh), srcimg.shape[0])
            #print(det_classid[i], det_conf[i])
            anchor.append([xmin, ymin, xmax, ymax])
            label.append(classes[det_classid[i]])

        return anchor,label

    def post_process(self, preds):
        cls_scores, bbox_preds = preds[::2], preds[1::2]
        det_bboxes, det_conf, det_classid = self.get_bboxes_single(cls_scores, bbox_preds, 1, rescale=False)
        return det_bboxes.astype(np.int32), det_conf, det_classid
    def get_bboxes_single(self, cls_scores, bbox_preds, scale_factor, rescale=False):
        mlvl_bboxes = []
        mlvl_scores = []
        for stride, cls_score, bbox_pred, anchors in zip(self.strides, cls_scores, bbox_preds, self.mlvl_anchors):
            if cls_score.ndim==3:
                cls_score = cls_score.squeeze(axis=0)
            if bbox_pred.ndim==3:
                bbox_pred = bbox_pred.squeeze(axis=0)
            bbox_pred = self.softmax(bbox_pred.reshape(-1, self.reg_max + 1), axis=1)
            # bbox_pred = np.sum(bbox_pred * np.expand_dims(self.project, axis=0), axis=1).reshape((-1, 4))
            bbox_pred = np.dot(bbox_pred, self.project).reshape(-1,4)
            bbox_pred *= stride

            # nms_pre = cfg.get('nms_pre', -1)
            nms_pre = 1000
            if nms_pre > 0 and cls_score.shape[0] > nms_pre:
                max_scores = cls_score.max(axis=1)
                topk_inds = max_scores.argsort()[::-1][0:nms_pre]
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                cls_score = cls_score[topk_inds, :]

            bboxes = self.distance2bbox(anchors, bbox_pred, max_shape=self.input_shape)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(cls_score)

        mlvl_bboxes = np.concatenate(mlvl_bboxes, axis=0)
        if rescale:
            mlvl_bboxes /= scale_factor
        mlvl_scores = np.concatenate(mlvl_scores, axis=0)

        bboxes_wh = mlvl_bboxes.copy()
        bboxes_wh[:, 2:4] = bboxes_wh[:, 2:4] - bboxes_wh[:, 0:2]  ####xywh
        classIds = np.argmax(mlvl_scores, axis=1)
        confidences = np.max(mlvl_scores, axis=1)  ####max_class_confidence

        indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.prob_threshold, self.iou_threshold)
        if len(indices)>0:
            mlvl_bboxes = mlvl_bboxes[indices[:, 0]]
            confidences = confidences[indices[:, 0]]
            classIds = classIds[indices[:, 0]]
            return mlvl_bboxes, confidences, classIds
        else:
            print('nothing detect')
            return np.array([]), np.array([]), np.array([])
    def distance2bbox(self, points, distance, max_shape=None):
        x1 = points[:, 0] - distance[:, 0]
        y1 = points[:, 1] - distance[:, 1]
        x2 = points[:, 0] + distance[:, 2]
        y2 = points[:, 1] + distance[:, 3]
        if max_shape is not None:
            x1 = np.clip(x1, 0, max_shape[1])
            y1 = np.clip(y1, 0, max_shape[0])
            x2 = np.clip(x2, 0, max_shape[1])
            y2 = np.clip(y2, 0, max_shape[0])
        return np.stack([x1, y1, x2, y2], axis=-1)

    def drawPred(self, frame, classId, conf, left, top, right, bottom):
        # Draw a bounding box.
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=4)

        label = '%.2f' % conf
        label = '%s:%s' % (self.classes[classId], label)

        # Display the label at the top of the bounding box
        labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        top = max(top, labelSize[1])
        # cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
        cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
        return frame

if __name__=='__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--video_path', type=str, default='检测视频.avi', help="video path")
    parser.add_argument('--model_path', type=str, default='new.onnx', help='(.onnx)model path')
    parser.add_argument('--sav_path', type=str, default='result.json', help='(.json)result file path')
    args = parser.parse_args()
    args.input_shape  = 320     #input image shape
    args.confThreshold= 0.37    #class confidence
    args.nmsThreshold = 0.6     #nms iou thresh

    import json
    file = open(args.sav_path, 'w')

    capure = cv2.VideoCapture(args.video_path)#get video
    net = my_nanodet(input_shape=args.input_shape, prob_threshold=args.confThreshold, iou_threshold=args.nmsThreshold,model=args.model_path)

    import time
    #推理
    if capure.isOpened():
        while True:
            ret,img = capure.read()
            if not ret: break
            #获取到图像
            a = time.time()
            anchor,label = net.detect(img)
            b = time.time()
            ti = b - a

            data = {
                "time":ti*1000,
                "anchor":anchor,
                "label":label
            }
            resultsW.append(data)
        #写入文件
        with open(args.sav_path, 'w') as f:
            json.dump(resultsW, f)
    else:
        print('open video error')


可视化

import cv2
import numpy as np
import argparse
import time
import logging
import threading


classes = ['helmet', 'with_mask', 'reflective_clothes']
resultsW= []

def grab_img(cam):
    """This 'grab_img' function is designed to be run in the sub-thread.
    Once started, this thread continues to grab a new image and put it
    into the global 'img_handle', until 'thread_running' is set to False.
    """
    while cam.thread_running:
        _, cam.img_handle = cam.cap.read()
        fps = cam.cap.get(cv2.CAP_PROP_FPS)
        time.sleep(1/fps)  # fps = 20hz
        #print('time sleep ', 1/fps)
        if cam.img_handle is None:
            logging.warning('grab_img(): cap.read() returns None...')
            break
    cam.thread_running = False

class Camera():
    """Camera class which supports reading images from this video sources:
     Video file
    """

    def __init__(self, args):
        self.args = args
        self.is_opened = False
        self.thread_running = False
        self.img_handle = None
        self.img_width = 0
        self.img_height = 0
        self.cap = None
        self.thread = None

    def open(self):
        args = self.args
        #视频读取
        self.cap = cv2.VideoCapture(args.filename)
        # ignore image width/height settings here

        if self.cap != 'OK':
            if self.cap.isOpened():
                # Try to grab the 1st image and determine width and height
                _, img = self.cap.read()
                if img is not None:
                    self.img_height, self.img_width, _ = img.shape
                    self.is_opened = True

    def start(self):
        assert not self.thread_running
        self.thread_running = True
        self.thread = threading.Thread(target=grab_img, args=(self,))
        self.thread.start()

    def stop(self):
        self.thread_running = False
        self.thread.join()

    def read(self):
        self.img_handle.shape = [self.img_height,self.img_width]
        return self.img_handle

    def release(self):
        assert not self.thread_running
        if self.cap != 'OK':
            self.cap.release()

class my_nanodet():
    def __init__(self,model, input_shape=320, prob_threshold=0.4, iou_threshold=0.3):
        self.classes = classes
        self.num_classes = len(self.classes)
        self.strides = (8, 16, 32)
        self.input_shape = (input_shape, input_shape)
        self.reg_max = 7
        self.prob_threshold = prob_threshold
        self.iou_threshold = iou_threshold
        self.project = np.arange(self.reg_max + 1)
        self.mean = np.array([103.53, 116.28, 123.675], dtype=np.float32).reshape(1, 1, 3)
        self.std = np.array([57.375, 57.12, 58.395], dtype=np.float32).reshape(1, 1, 3)
        self.net = cv2.dnn.readNet(model)

        self.mlvl_anchors = []
        for i in range(len(self.strides)):
            #print(type(self.input_shape[0]))
            anchors = self._make_grid((int(self.input_shape[0] / self.strides[i]), int(self.input_shape[1] / self.strides[i])), self.strides[i])
            self.mlvl_anchors.append(anchors)
    def _make_grid(self, featmap_size, stride):
        feat_h, feat_w = featmap_size
        shift_x = np.arange(0, feat_w) * stride
        shift_y = np.arange(0, feat_h) * stride
        xv, yv = np.meshgrid(shift_x, shift_y)
        xv = xv.flatten()
        yv = yv.flatten()
        cx = xv + 0.5 * (stride-1)
        cy = yv + 0.5 * (stride - 1)
        return np.stack((cx, cy), axis=-1)
    def softmax(self,x, axis=1):
        x_exp = np.exp(x)
        # 如果是列向量,则axis=0
        x_sum = np.sum(x_exp, axis=axis, keepdims=True)
        s = x_exp / x_sum
        return s

    def _normalize(self, img):   ### c++: https://blog.csdn.net/wuqingshan2010/article/details/107727909
        img = img.astype(np.float32)
        img = (img - self.mean) / self.std
        return img
    def resize_image(self, srcimg, keep_ratio=True):
        top, left, newh, neww = 0, 0, self.input_shape[0], self.input_shape[1]
        if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
            hw_scale = srcimg.shape[0] / srcimg.shape[1]
            if hw_scale > 1:
                newh, neww = self.input_shape[0], int(self.input_shape[1] / hw_scale)
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                left = int((self.input_shape[1] - neww) * 0.5)
                img = cv2.copyMakeBorder(img, 0, 0, left, self.input_shape[1] - neww - left, cv2.BORDER_CONSTANT,
                                         value=0)  # add border
            else:
                newh, neww = int(self.input_shape[0] * hw_scale), self.input_shape[1]
                img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
                top = int((self.input_shape[0] - newh) * 0.5)
                img = cv2.copyMakeBorder(img, top, self.input_shape[0] - newh - top, 0, 0, cv2.BORDER_CONSTANT, value=0)
        else:
            img = cv2.resize(srcimg, self.input_shape, interpolation=cv2.INTER_AREA)
        return img, newh, neww, top, left
    def detect(self, srcimg):
        img, newh, neww, top, left = self.resize_image(srcimg)
        img = self._normalize(img)
        blob = cv2.dnn.blobFromImage(img)
        # Sets the input to the network
        self.net.setInput(blob)

        # Runs the forward pass to get output of the output layers
        outs = self.net.forward(self.net.getUnconnectedOutLayersNames())
        det_bboxes, det_conf, det_classid = self.post_process(outs)

        drawimg = srcimg.copy()
        ratioh,ratiow = srcimg.shape[0]/newh,srcimg.shape[1]/neww

        anchor = []
        label  = []
        #修改为.json写入 #det_conf[i]是置信度
        for i in range(det_bboxes.shape[0]):

            xmin, ymin, xmax, ymax = max(int((det_bboxes[i,0] - left) * ratiow), 0), max(int((det_bboxes[i,1] - top) * ratioh), 0), min(
                int((det_bboxes[i,2] - left) * ratiow), srcimg.shape[1]), min(int((det_bboxes[i,3] - top) * ratioh), srcimg.shape[0])
            #print(det_classid[i], det_conf[i])
            anchor.append([xmin, ymin, xmax, ymax])
            label.append(classes[det_classid[i]])
            #print(anchor[-1],label[-1])
            self.drawPred(drawimg, det_classid[i], det_conf[i], xmin, ymin, xmax, ymax)
        return drawimg

    def post_process(self, preds):
        cls_scores, bbox_preds = preds[::2], preds[1::2]
        det_bboxes, det_conf, det_classid = self.get_bboxes_single(cls_scores, bbox_preds, 1, rescale=False)
        return det_bboxes.astype(np.int32), det_conf, det_classid
    def get_bboxes_single(self, cls_scores, bbox_preds, scale_factor, rescale=False):
        mlvl_bboxes = []
        mlvl_scores = []
        for stride, cls_score, bbox_pred, anchors in zip(self.strides, cls_scores, bbox_preds, self.mlvl_anchors):
            if cls_score.ndim==3:
                cls_score = cls_score.squeeze(axis=0)
            if bbox_pred.ndim==3:
                bbox_pred = bbox_pred.squeeze(axis=0)
            bbox_pred = self.softmax(bbox_pred.reshape(-1, self.reg_max + 1), axis=1)
            # bbox_pred = np.sum(bbox_pred * np.expand_dims(self.project, axis=0), axis=1).reshape((-1, 4))
            bbox_pred = np.dot(bbox_pred, self.project).reshape(-1,4)
            bbox_pred *= stride

            # nms_pre = cfg.get('nms_pre', -1)
            nms_pre = 1000
            if nms_pre > 0 and cls_score.shape[0] > nms_pre:
                max_scores = cls_score.max(axis=1)
                topk_inds = max_scores.argsort()[::-1][0:nms_pre]
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                cls_score = cls_score[topk_inds, :]

            bboxes = self.distance2bbox(anchors, bbox_pred, max_shape=self.input_shape)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(cls_score)

        mlvl_bboxes = np.concatenate(mlvl_bboxes, axis=0)
        if rescale:
            mlvl_bboxes /= scale_factor
        mlvl_scores = np.concatenate(mlvl_scores, axis=0)

        bboxes_wh = mlvl_bboxes.copy()
        bboxes_wh[:, 2:4] = bboxes_wh[:, 2:4] - bboxes_wh[:, 0:2]  ####xywh
        classIds = np.argmax(mlvl_scores, axis=1)
        confidences = np.max(mlvl_scores, axis=1)  ####max_class_confidence

        indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.prob_threshold, self.iou_threshold)
        if len(indices)>0:
            mlvl_bboxes = mlvl_bboxes[indices[:, 0]]
            confidences = confidences[indices[:, 0]]
            classIds = classIds[indices[:, 0]]
            return mlvl_bboxes, confidences, classIds
        else:
            print('nothing detect')
            return np.array([]), np.array([]), np.array([])
    def distance2bbox(self, points, distance, max_shape=None):
        x1 = points[:, 0] - distance[:, 0]
        y1 = points[:, 1] - distance[:, 1]
        x2 = points[:, 0] + distance[:, 2]
        y2 = points[:, 1] + distance[:, 3]
        if max_shape is not None:
            x1 = np.clip(x1, 0, max_shape[1])
            y1 = np.clip(y1, 0, max_shape[0])
            x2 = np.clip(x2, 0, max_shape[1])
            y2 = np.clip(y2, 0, max_shape[0])
        return np.stack([x1, y1, x2, y2], axis=-1)

    def drawPred(self, frame, classId, conf, left, top, right, bottom):
        # Draw a bounding box.
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=4)

        label = '%.2f' % conf
        label = '%s:%s' % (self.classes[classId], label)

        # Display the label at the top of the bounding box
        labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        top = max(top, labelSize[1])
        # cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
        cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
        return frame

#使用多进程
def main_thread():
    parser = argparse.ArgumentParser()
    parser.add_argument('--video_path', type=str, default='检测视频.avi', help="video path")
    parser.add_argument('--model_path', type=str, default='new.onnx', help='(.onnx)model')
    args = parser.parse_args()
    args.filename = args.video_path
    args.input_shape  = 320     #input image shape
    args.confThreshold= 0.37    #class confidence
    args.nmsThreshold = 0.6     #nms iou thresh

    import json
    file = open('test.json', 'w')

    net = my_nanodet(input_shape=args.input_shape, prob_threshold=args.confThreshold, iou_threshold=args.nmsThreshold,model=args.model_path)
    cam = Camera(args)  # get video
    cam.open()
    cam.start()

    import time
    # 推理
    while cam.thread_running:
        img = cam.read()
        a = time.time()
        srcimg = net.detect(img)
        b = time.time()
        time_w = b - a
        print('waste time', time_w * 1000)
        cv2.imshow('video test', srcimg)
    cv2.destroyAllWindows()

def main_one():
    parser = argparse.ArgumentParser()
    parser.add_argument('--video_path', type=str, default='检测视频.avi', help="video path")
    parser.add_argument('--model_path', type=str, default='new.onnx', help='(.onnx)model')
    args = parser.parse_args()
    args.input_shape  = 320     #input image shape
    args.confThreshold= 0.37    #class confidence
    args.nmsThreshold = 0.6     #nms iou thresh

    import json
    file = open('test.json', 'w')

    capure = cv2.VideoCapture(args.video_path)#get video
    net = my_nanodet(input_shape=args.input_shape, prob_threshold=args.confThreshold, iou_threshold=args.nmsThreshold,model=args.model_path)

    import time

    #推理
    if capure.isOpened():
        while True:
            ret,img = capure.read()
            if not ret: break
            #获取到图像
            a = time.time()
            srcimg = net.detect(img)
            b = time.time()
            time_w = b - a
            print('waste time', time_w*1000)
            cv2.imshow('video test', srcimg)
            cv2.waitKey(1)
        cv2.destroyAllWindows()

    else:
        print('open video error')

if __name__== '__main__':
    main_one()

可视化检测结果

        第二段代码有很多冗余的部分,那部分是我想实现多线程但是没写出来,如果多线程把读取视频和推理放在不同线程里进行的话还能让网络更快(更即时),还想实现多线程的同学可以看这篇文http://t.csdn.cn/OqHlN。

 

 

        

        

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/482400.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LeetCode股票买卖系列:123. 买卖股票的最佳时机 III 暴力递归=>记忆化搜索=>动态规划】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

基于Flask+Bootstrap+机器学习的南昌市租房价格预测系统

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

图片分类:精细化分类,(Fine-Grained Categorization) 基于人的行为的精细化分类

文字大纲 简介数据集常用数据集方法1 : 强监督方法2 : 弱监督Two Level Attention Model双线性网络 Bilinear CNN model参考文献和学习路径简介 细粒度图像识别 (fine-grained image recognition),即 精细化分类。 细粒度图像分类(Fine-Grained Categorization), 又被称作…

2023年05月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年05月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…

感知机介绍

1&#xff0c;数学定义&#xff1a; Note:<>在数学中通常指求期望的意思。 假设我们用感知机区分cat和dog&#xff0c;使用下面三个特征&#xff1a;x1: color of hair&#xff1b;x2:length of leg&#xff1b;x3:volume of head。cat 用1表示&#xff0c;dog用-1表示&…

Golang每日一练(leetDay0053)

目录 155. 最小栈 Min Stack &#x1f31f;&#x1f31f; 156. 二叉树的上下翻转 Binary Tree Upside Down &#x1f31f;&#x1f31f; &#x1f31f; 每日一练刷题专栏 &#x1f31f; Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏 …

ArrayList集合扩容机制入门

首先&#xff0c;ArrayList集合存储的数据在底层是一个数组&#xff08;名字elementData&#xff09;&#xff0c;这个数组是Object的数组&#xff0c;因为是Object数组&#xff0c;所以集合啥都可以装。 讲解ArrayList的扩容机制&#xff0c;要从ArrayList的构造器来分类&…

Spark RDD 持久化(CheckPoint 检查点)

RDD Cache 缓存 RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存&#xff0c;默认情况下会把数据以缓存 在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存&#xff0c;而是触发后面的 action 算 子时&#xff0c;该 RDD 将会被缓存在计算节点的内存中 // cach…

debian11快速 ceph集群17.2.6(Quincy版)

由于网友跟我讲Pacific版快到期了&#xff0c;所以出一个Quincy版的部署文档 配置一下源 echo "deb http://mirrors.163.com/ceph/debian-quincy/ bullseye main" > /etc/apt/sources.list.d/ceph.list还是像以前一样使用docker或者podman 安装工具cephadm ce…

java获取文件名后缀方法

Java是一种应用广泛的编程语言&#xff0c;可以通过多种方式来实现对文件的操作。如文件名后缀、文件扩展名等。今天我们来看下 Java是如何获取文件名后缀的吧&#xff01; 1.打开一个空文件&#xff0c;将其复制到一个新的文件夹中。 2.新建一个类&#xff0c;在里面定义方法&…

mysql 数据库备份

目录 数据库备份的方式 一、备份整个 $datadir 二、用mysqldump备份 备份某个库 只备份某个库下某个表 有很多库时候&#xff0c;一次性备份所有的库 一次指定备份某几个库 只备份表结构&#xff0c;不要里面数据 数据库还原的方式 1、在对应数据库下source还原 2…

学系统集成项目管理工程师(中项)系列16a_风险管理(上)

1. 风险的定义 1.1. 损失的不确定性 1.1.1. 狭义 1.2. 带来损失的可能性&#xff0c;也指可能获利的机会 1.2.1. 广义 1.3. 风险是一种不确定的事件或条件&#xff0c;一旦发生&#xff0c;就会产生积极或消极的影响 2. 性质划分 2.1. 纯粹风险 2.1.1. 只有损失可能性而…

IntelliJ IDEA修改背景颜色大全(护眼绿等)设置注释颜色

一.IDEA默认有3种背景颜色 路径为File->settings->Editor->Color Scheme可以设置软件默认颜色&#xff0c;旁边的小齿轮添加颜色名字 二.IDEA扩展颜色&#xff08;护眼绿&#xff09; 第一种方法&#xff1a; IDEA设置一张背景图片,路径&#xff1a;File->Setti…

C#,生信软件实践(02)——欧洲分子生物学实验室(EMBL格式文件)转为核酸序列或多肽序列(FASTA格式文件)的源代码

>生信老白写的基础代码.fasta MAYBENOANYUSAGE 1 EMBL 1.1 EMBL组织 欧洲分子生物学实验室EMBL&#xff08;European Molecular Biology Laboratory&#xff09;1974年由欧洲14个国家加上亚洲的以色列共同发起建立&#xff0c;现在由欧洲30个成员国政府支持组成&#xf…

【ARMv8 编程】A64 内存访问指令——内存存储指令

在内存加载一节中实际上已经使用了内存存储指令了&#xff0c;内存存储指令将寄存器的值存储到内存中。 同样&#xff0c;Store 指令的一般形式如下&#xff1a; STR Rn, <addr> 还有 unscaled-offset 偏移形式&#xff0c;例如 STUR<type>。 程序员通常不需要明…

Python多元线性回归预测模型实验完整版

多元线性回归预测模型 实验目的 通过多元线性回归预测模型&#xff0c;掌握预测模型的建立和应用方法&#xff0c;了解线性回归模型的基本原理 实验内容 多元线性回归预测模型 实验步骤和过程 (1)第一步&#xff1a;学习多元线性回归预测模型相关知识。 一元线性回归模型…

高级数据结构专题

1.树状数组 设计二分&#xff0c;二叉树&#xff0c;位运算&#xff0c;前缀和等思想 lowbit x & -x 功能&#xff1a;找到x的二进制数的最后一个1 1.1 树状数组模板 def lowbit(x):return x &-x def add (x,d):while(x < n) :tree[x] dxlowbit(x) def sum(x):an…

零基础学会 Java,这是你需要按照学习的步骤,加油,新加入的你

学习 Java 需要遵循一定的步骤&#xff0c;首先需要学习计算机基础知识&#xff0c;例如算法、数据结构、计算机组成原理等。如果没有相关背景知识&#xff0c;可以参加计算机相关课程进行学习。其次是学习编程基础知识&#xff0c;例如控制流、变量、函数等&#xff0c;你可以…

详解c++---list模拟实现

目录标题 list的准备工作构造函数push_backlist迭代器beginendinserteraseclearconst迭代器list迭代器区间构造swap现代拷贝构造函数现代赋值重载sizeempty->重载 list的准备工作 首先我们知道list是一个带头双向链表&#xff0c;他的数据就会存储在一个一个的节点里面&…

Python基础合集 练习22 (错误与异常处理语句2)

‘’’ try: 语句块 except: 语句块2 else ‘’’ class Mobe1(): def init(self) -> None: pass def mob1(self):while True:try:num int(input(请输入一个数: ))result 50 / numprint(result)print(50/{0}{1}.format(num, result))except (ZeroDivisionError, ValueEr…