【毕业设计】大数据共享单车数据分析系统 - python

news2024/11/24 16:30:51

文章目录

  • 0 前言
  • 1 项目背景
  • 2 项目分析思维导图
  • 3 项目分析具体步骤
    • 3.1 读取数据
    • 3.2 数据分析
      • 3.1.1 数据预处理——每日使用量分析
      • 3.1.2 连续7天的单日使用分析结论
      • 3.1.3 数据预处理——每日不同时间段的使用量分析
      • 3.1.4 每日不同时间段使用量分析结论
      • 3.1.5 数据预处理——骑行距离的分析
      • 3.1.6 数据预处理——高峰期单车迁移情况分析
      • 3.1.7 数据预处理——用户使用频次分析
  • 4 项目总结
    • 4.1 分析明确了共享单车的使用场景:
    • 4.2 改善性意见:
  • 5 最后

0 前言

🔥 Hi,大家好,这里是丹成学长的毕设系列文章!

🔥 对毕设有任何疑问都可以问学长哦!

这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定要提前准备,避免到后面措手不及,草草了事。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的新项目是

🚩 基于大数据的共享单车数据分析

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 选题指导, 项目分享:

https://gitee.com/yaa-dc/BJH/blob/master/gg/cc/README.md

1 项目背景

公共交通工具的“最后一公里”是城市居民出行采用公共交通出行的主要障碍,也是建设绿色城市、低碳城市过程中面临的主要挑战。
共享单车(自行车)企业通过在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供服务,完成交通行业最后一块“拼图”,带动居民使用其他公共交通工具的热情,也与其他公共交通方式产生协同效应。

共享单车是一种分时租赁模式,也是一种新型绿色环保共享经济。自2014年ofo首次提出共享单车概念,至今已陆续产生了25个共享单车品牌,与传统的有桩借还自行车相比,无桩的共享单车自由度更高,广受用户好评。

本次分析拟取2017年5月中旬某共享单车在北京地区的车辆订单数据,从时间、空间、频次三个维度进行分析,对该品牌共享单车的发展方向提出改善性意见。

2 项目分析思维导图

在这里插入图片描述

3 项目分析具体步骤

3.1 读取数据

from geopy.geocoders import BaiduV3
from geopy import distance
import geohash as gh
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pyecharts.charts import *
from pyecharts import options as opts
import datetime
%matplotlib inline

fpath="../data/shared-bakes/train.csv"
df_shared_bakes=pd.read_csv(fpath,encoding="gbk")


df_shared_bakes.head()

在这里插入图片描述

3.2 数据分析

3.1.1 数据预处理——每日使用量分析

df_shared_bakes_time_sorted=df_shared_bakes.sort_values(by="starttime")
df_shared_bakes_time_sorted.head()

在这里插入图片描述

#完整数据的时间跨度为2017-5-10至2017-5-24,历时15天
early=df_shared_bakes_time_sorted.iloc[0,:]
last=df_shared_bakes_time_sorted.iloc[-1,:]
print(early.starttime)
print(last.starttime)

df_shared_bakes_time_in_range=df_shared_bakes_time_sorted.loc[df_shared_bakes_time_sorted["starttime"]<"2017-05-17",:]
df_shared_bakes_time_in_range.iloc[-1,:]

#提取连续7天数据的1%用于时间维度的分析
df_shared_bakes_data_used=df_shared_bakes_time_in_range.loc[df_shared_bakes_time_in_range.index%100==0,:]
df_shared_bakes_data_used.info()

#2017-05-10是星期三
#对比7天内每天的用户总量,分析工作日与周末的使用量是否存在差异
df_used_by_date=df_shared_bakes_data_used
a=df_used_by_date["starttime"].str.split(" ",expand=True)
#a
df_used_by_date.loc[:,"startdate"]=a.loc[:,0]
df_used_by_date.loc[:,"startetime"]=a.loc[:,1]
#df_used_by_date.head()
s_used_by_date=df_used_by_date.groupby("startdate").count()["userid"]
s_used_by_date

在这里插入图片描述

3.1.2 连续7天的单日使用分析结论

  • 工作日相较于周末使用量更多
  • 分别比较工作日与周末的使用量,整体趋势为稳步增长趋势
#工作日比周末(13,14日)的使用量更多
bar_used_by_date=(Bar()
    .add_xaxis(list(s_used_by_date.index))
    .add_yaxis("每日单车使用次数/100",list(s_used_by_date))
    .set_global_opts(
                    title_opts={"text":"连续7天的单日使用量统计","subtext":"取连续7天数据的1%进行统计"})
    )

bar_used_by_date.render_notebook()

在这里插入图片描述

#工作日平均每天的使用量占比约为54.23%,周末平均每天使用量占比45.77%
workday_used_mean=s_used_by_date[s_used_by_date.index.isin(["2017-05-10","2017-05-11","2017-05-12","2017-05-15","2017-05-16"])].sum()/5
weekend_used_mean=s_used_by_date[s_used_by_date.index.isin(["2017-05-13","2017-05-14"])].sum()/2
#print(workday_used_mean)
#print(weekend_used_mean)
weekend_pct=round(weekend_used_mean*100/(weekend_used_mean+workday_used_mean),2)
workday_pct=round(workday_used_mean*100/(weekend_used_mean+workday_used_mean),2)

pie_used_data=[["workday "+str(workday_pct)+"%",workday_used_mean],["weekend "+str(weekend_pct)+"%",weekend_used_mean]]
pie_used=(Pie()
         .add("",pie_used_data,center=["35%","50%"],radius=[0,175])
         .set_global_opts(title_opts=opts.TitleOpts(title="工作日与周末平均使用量占比统计")))

pie_used.render_notebook()
#s_used_by_date.sum()
#s_used_by_date.sum()

在这里插入图片描述

3.1.3 数据预处理——每日不同时间段的使用量分析

#提取小时信息,用于每日不同时间段的使用量分析
df_used_by_date.loc[:,"hour"]=df_used_by_date["startetime"].str.slice(0,2)
#df_used_by_date.loc[:,"startetime"]
df_used_by_date.head()

在这里插入图片描述

#将数据分为7个单日,分布分析每日不同时间段的使用量
Wednesday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-10",:]
Thursday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-11",:]
Friday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-12",:]
Saturday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-13",:]
Sunday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-14",:]
Monday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-15",:]
Tuesday=df_used_by_date.loc[df_used_by_date.startdate=="2017-05-16",:]
Wednesday_used=Wednesday.groupby("hour").count()["userid"]
Thursday_used=Thursday.groupby("hour").count()["userid"]
Friday_used=Friday.groupby("hour").count()["userid"]
Saturday_used=Saturday.groupby("hour").count()["userid"]
Sunday_used=Sunday.groupby("hour").count()["userid"]
Monday_used=Monday.groupby("hour").count()["userid"]
Tuesday_used=Tuesday.groupby("hour").count()["userid"]

#对比每一天不同时间的使用量,分析是否存在有规律的使用峰值等特征
#工作日与周末分布有不同的分布规律,分别分析
Line_used_by_time=(Line()
                   .add_xaxis(list(Wednesday_used.index))
                   .add_yaxis("Wednesday",Wednesday_used)
                   .add_yaxis("Thursday",Thursday_used)
                   .add_yaxis("Friday",Friday_used)
                   .add_yaxis("Saturday",Saturday_used)
                   .add_yaxis("Sunday",Sunday_used)
                   .add_yaxis("Monday",Monday_used)
                   .add_yaxis("Tuesday",Tuesday_used)
                   .set_series_opts(
                                    label_opts=opts.LabelOpts(is_show=False))
                   .set_global_opts(
                                    title_opts=opts.TitleOpts(title="连续7天单日不同时间段使用量统计",subtitle="取连续7天数据的1%进行统计"),
                                    legend_opts=opts.LegendOpts(pos_left="right"))
                   )

Line_used_by_time.render_notebook()

在这里插入图片描述

3.1.4 每日不同时间段使用量分析结论

  • 工作日早晚各有一个峰值,中午12点有一个小峰值,说明工作日的单车使用时间符合通勤高峰时间规律,工作日的使用场景以通勤为主,还伴有部分午餐时间的使用
  • 周末在8点至21点区间内使用量平缓分布,中午11至12点、晚5点至7点各有一个小高峰,说明周末的单车使用时间与午餐、晚餐时间相关,即周末的使用场景以休闲、聚餐为主
  • 结合前述单日总使用量的对比,通勤需求产生的使用量更大,可能产生潮汐现象(后续具体分析)
  • 可以选择工作日非高峰时段或周末进行单车维修、保养等工作
#对比工作日与周末不同时间的使用量,分析分布规律
Line_used_by_time_new=(Line()
                   .add_xaxis(list(Weekend_used.index))
                   .add_yaxis("Weekend",Weekend_used,
                             markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max")]))
                   .add_yaxis("Workday",Workday_used,
                             markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max")]))
                   .set_series_opts(
                                    label_opts=opts.LabelOpts(is_show=False))
                   )

Line_used_by_time_new.render_notebook()

在这里插入图片描述

3.1.5 数据预处理——骑行距离的分析

df_used_by_date=df_used_by_date.reset_index(drop=True)
df_used_by_date.head()
#当前位置数据采用geohash编码方式,geohash编码长度为7位
#解码后发现经纬度在小数点后两位时,geohash编码的第7位无法有效区分
#因此距离小于850m时,无法明确计算出距离,统一用0值填充
s_series=df_used_by_date.loc[:,"geohashed_start_loc"]
e_series=df_used_by_date.loc[:,"geohashed_end_loc"]
for i in df_used_by_date.index:
    s=gh.decode(s_series[i])
    e=gh.decode(e_series[i])
    s_loc=str(float(s[0]))+","+str(float(s[1]))
    e_loc=str(float(e[0]))+","+str(float(e[1]))
    df_used_by_date.loc[i,"起始纬度"]=float(s[0])
    df_used_by_date.loc[i,"起始经度"]=float(s[1])
    df_used_by_date.loc[i,"结束纬度"]=float(e[0])
    df_used_by_date.loc[i,"结束经度"]=float(e[1])
    df_used_by_date.loc[i,"起始点距离"]=distance.distance(s,e).km
    if i%1000==0:
        print(f'{round(i*100/(df_used_by_date.index.stop-1),5)}%')
    elif i==df_used_by_date.index.stop-1:
        print("100%")
df_used_by_date.head(10)

#工作日与周末的分布情况相似,大部分用户的骑行距离都小于1.4km
dis_10=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-10","起始点距离"],2)
dis_11=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-11","起始点距离"],2)
dis_12=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-12","起始点距离"],2)
dis_13=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-13","起始点距离"],2)
dis_14=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-14","起始点距离"],2)
dis_15=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-15","起始点距离"],2)
dis_16=round(df_used_by_date.loc[df_used_by_date.startdate=="2017-05-16","起始点距离"],2)

box=(Boxplot()
    .add_xaxis(["2017-05-10","2017-05-11","2017-05-12","2017-05-13","2017-05-14","2017-05-15","2017-05-16"])
    .add_yaxis("",Boxplot.prepare_data([dis_10,dis_11,dis_12,dis_13,dis_15,dis_15,dis_16]))
    .set_global_opts(title_opts=opts.TitleOpts(title="用户骑行距离统计")))

box.render_notebook()

在这里插入图片描述

#骑行距离不超过1km的用户占比过半
df_used_by_date["起始点int值"]=df_used_by_date.起始点距离.astype(int)
dis_grouped=df_used_by_date.groupby("起始点int值").count()["userid"]
pie_dis_x=list(str(i)+"-"+str(i+1)+" km" for i in dis_grouped.index)
dis_data=list(list(z) for z in zip(pie_dis_x,dis_grouped))
dis_data[0][0]="小于1 km"
pie_dis=(Pie()
        .add("",dis_data,center=["35%", "60%"],radius=[0, 175])
        .set_global_opts(title_opts=opts.TitleOpts(title="骑行距离比例分布",pos_bottom="83%"))
        )

pie_dis.render_notebook()

在这里插入图片描述

3.1.6 数据预处理——高峰期单车迁移情况分析

#df_used_by_date.起始纬度.min()——26.14
#df_used_by_date.起始纬度.max()——40.3
#df_used_by_date.起始经度.min()——114.15
#df_used_by_date.起始经度.max()——121.52
#df_used_by_date.结束纬度.min()——26.13
#df_used_by_date.结束纬度.max()——40.3
#df_used_by_date.结束经度.min()——114.14
#df_used_by_date.结束经度.max()——121.51


#提取7-8点时间段内所有被使用的单车的起点位置和终点位置
df_hour_7=df_used_by_date.loc[df_used_by_date.hour=="07",:]
start_point_7=df_hour_7.groupby(["起始经度","起始纬度"]).count()["orderid"]
start_point_7=start_point_7.reset_index(drop=False)
t=zip(start_point_7["起始经度"],start_point_7["起始纬度"],start_point_7["orderid"])
start_loc_7=[]
for z in t:
    #print(z)
    start_loc_7.append(list(z)) 

end_point_7=df_hour_7.groupby(["结束经度","结束纬度"]).count()["orderid"]
end_point_7=end_point_7.reset_index(drop=False)
t=zip(end_point_7["结束经度"],end_point_7["结束纬度"],end_point_7["orderid"])
end_loc_7=[]
for z in t:
    #print(z)
    end_loc_7.append(list(z))

#提取8-9点时间段内所有被使用的单车的起点位置和终点位置
df_hour_8=df_used_by_date.loc[df_used_by_date.hour=="08",:]
start_point_8=df_hour_8.groupby(["起始经度","起始纬度"]).count()["orderid"]
start_point_8=start_point_8.reset_index(drop=False)
t=zip(start_point_8["起始经度"],start_point_8["起始纬度"],start_point_8["orderid"])
start_loc_8=[]
for z in t:
    #print(z)
    start_loc_8.append(list(z)) 

end_point_8=df_hour_8.groupby(["结束经度","结束纬度"]).count()["orderid"]
end_point_8=end_point_8.reset_index(drop=False)
t=zip(end_point_8["结束经度"],end_point_8["结束纬度"],end_point_8["orderid"])
end_loc_8=[]
for z in t:
    #print(z)
    end_loc_8.append(list(z)) 


#将7-8点时间段内的点起始位置分布绘制为两张图
bar_3D_start_7=(Bar3D()
       .add("",
           start_loc_7)
       .set_global_opts(
           title_opts=opts.TitleOpts(title="7-8点单车迁移情况统计",subtitle="7-8点单车起始位置分布"),
        visualmap_opts=opts.VisualMapOpts(
            max_=8,
            min_=5,
            range_color=[
                "#313695",
                "#4575b4",
                "#74add1",
                "#abd9e9",
                "#e0f3f8",
                "#ffffbf",
                "#fee090",
                "#fdae61",
                "#f46d43",
                "#d73027",
                "#a50026",
            ],
        )
    ))

bar_3D_end_7=(Bar3D()
       .add("",
           end_loc_7)
       .set_global_opts(
           title_opts=opts.TitleOpts(title="",subtitle="7-8点单车结束位置分布"),
        visualmap_opts=opts.VisualMapOpts(
            max_=8,
            min_=5,
            range_color=[
                "#313695",
                "#4575b4",
                "#74add1",
                "#abd9e9",
                "#e0f3f8",
                "#ffffbf",
                "#fee090",
                "#fdae61",
                "#f46d43",
                "#d73027",
                "#a50026",
            ],
        )))

在这里插入图片描述

在这里插入图片描述

3.1.7 数据预处理——用户使用频次分析

user_frequency=pd.DataFrame(df_shared_bakes_time_in_range.groupby("userid").count()["orderid"])
user_frequency=user_frequency.reset_index()
pie_user_frequency_data=user_frequency.groupby("orderid").count()["userid"]
more_than_10=pie_user_frequency_data[pie_user_frequency_data.index>10].sum()
pie_user_frequency_data=pie_user_frequency_data[:11]
pie_user_frequency_data[11]=more_than_10
pie_user_frequency_data=list(list(z) for z in zip(pie_user_frequency_data.index,pie_user_frequency_data))
pie_user_frequency_data[10][0]="大于10次"

date=df_shared_bakes_time_in_range["starttime"].str.slice(0,10)
df_shared_bakes_time_in_range.loc[:,"startdate"]=date
df_shared_bakes_time_in_range.head()
#date

user_frequency_weekend=pd.DataFrame(df_shared_bakes_time_in_range.loc[df_shared_bakes_time_in_range.startdate.isin(weekend),:].groupby("userid").count()["orderid"])
user_frequency_workday=pd.DataFrame(df_shared_bakes_time_in_range.loc[df_shared_bakes_time_in_range.startdate.isin(workday),:].groupby("userid").count()["orderid"])
user_frequency_weekend=user_frequency_weekend.reset_index()
user_frequency_workday=user_frequency_workday.reset_index()
pie_user_frequency_data_weekend=user_frequency_weekend.groupby("orderid").count()["userid"]
pie_user_frequency_data_workday=user_frequency_workday.groupby("orderid").count()["userid"]
more_than_10_weekend=pie_user_frequency_data_weekend[pie_user_frequency_data_weekend.index>10].sum()
more_than_10_workday=pie_user_frequency_data_workday[pie_user_frequency_data_workday.index>10].sum()
pie_user_frequency_data_weekend=pie_user_frequency_data_weekend[:11]
pie_user_frequency_data_workday=pie_user_frequency_data_workday[:11]
pie_user_frequency_data_weekend[11]=more_than_10_weekend
pie_user_frequency_data_workday[11]=more_than_10_workday
pie_user_frequency_data_weekend=list(list(z) for z in zip(pie_user_frequency_data_weekend.index,pie_user_frequency_data_weekend))
pie_user_frequency_data_workday=list(list(z) for z in zip(pie_user_frequency_data_workday.index,pie_user_frequency_data_workday))
pie_user_frequency_data_weekend[10][0]="大于10次"
pie_user_frequency_data_workday[10][0]="大于10次"


在这里插入图片描述

  • 一周内用户的使用次数大量分布在10次以下,50%的用户使用次数为4次及以下

  • 周末期间用户使用单车的次数普遍分布在3次及以下

  • 工作日期间用户使用共享单车的次数普遍分布在5次及以下,使用3次及以下的用户占比近一半

  • 工作日期间的用户使用频次有较大提升空间,通勤时段用户有大量使用需求,但总体来看使用频次仍偏低,考虑改进两个因素

  • 因素一 高峰时段的车辆分布情况,是否因为高峰时段车辆数量不足,导致用户无法使用到单车

  • 因素二 用户粘性差,是否用户对本品牌的单车选择倾向性低,可以考虑加大月卡等套餐的推广力度,或提升本品牌单车品质
    *工作日期间使用单车次数6次及以上的用户为高粘性用户,占比约30%

4 项目总结

4.1 分析明确了共享单车的使用场景:

  • 工作日早晚高峰的通勤需求和午餐时间部分用户外出用餐需求
  • 周末午餐、晚餐时间外出就餐需求,以及白天无明显峰值的外出需求
  • 短距离骑行(1.4公里内)

4.2 改善性意见:

  • 工作日高峰期时间段有明显的潮汐现象,可以提前增加高用车需求区域的单车投放量
  • 用户使用频次有提升空间,考虑到工作日的通勤需求,五个工作日期间有近50%的用户使用频次不超过三次,用户粘性较差,可以推广月卡或优惠套餐等进一步提升用户粘性

5 最后

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/4805.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++】智能指针

一、资源的管理 RAII:Resource Acquisition Is Initialization的简称&#xff0c;其翻译过来就是“资源获取即初始化”&#xff0c;即在构造函数中申请分配资源&#xff0c;在析构函数中释放资源&#xff0c;它是C语言中的一种管理资源、避免泄漏的良好方法。 C语言的机制保证…

python快速实现简易超级玛丽小游戏

《超级玛丽》是一款超级马里奥全明星的同人作品&#xff0c;也是任天堂公司出品的著名横版游戏。 《超级马里奥》是一款经典的像素冒险过关游戏。最早在红白机上推出&#xff0c;有多款后续作品&#xff0c;迄今多个版本合共销量已突破4000万套。其中的主角马里奥、路易、碧琪…

[附源码]计算机毕业设计JAVAjsp闲置物品线上交易系统

[附源码]计算机毕业设计JAVAjsp闲置物品线上交易系统 项目运行 环境配置&#xff1a; Jdk1.8 Tomcat7.0 Mysql HBuilderX&#xff08;Webstorm也行&#xff09; Eclispe&#xff08;IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持&#xff09;。 项目技术&#xff1a; SSM …

tensor和numpy相互转换

tensor转成numpy b a.numpy()import torcha torch.arange(5) b a.numpy() print(a) print(type(a)) print(b) print(type(b))numpy转成tensor b torch.tensor(a)import torch import numpy as npa np.ones(5) b torch.tensor(a) print(a) print(type(a)) print(b) prin…

Spring Cloud框架(原生Hoxton版本与Spring Cloud Alibaba)基础入门篇 ---- 搭建环境

springcloud官方文档&#xff08;Hoxton SR5&#xff09;&#xff1a;https://cloud.spring.io/spring-cloud-static/Hoxton.SR5/reference/htmlsingle/ springcloud中文文档&#xff1a;https://www.springcloud.cc/ springcloud中国社区文档&#xff1a;http://docs.springcl…

【C++】栈~~(很详细哦)

在前几天&#xff0c;我们刚一起学过顺序表&#xff0c;链表&#xff08;无头单向不循环&#xff0c;有头双向循环&#xff09;&#xff0c;这两种都属于线性表因为是一系列存储的。而以后的哈希表则是散列表 今天我们看一下栈 目录 1.栈的介绍 2.实现 3.题目 1.栈的介绍 …

mindspore::dataset::GetAffineTransform的输出与cv2的输出不同

在使用C进行推理时用到了函数mindspore::dataset::GetAffineTransform&#xff0c;但是输入相同的数据后&#xff0c;与Python的cv2中的同名函数cv2.getAffineTransform所输出的结果不同。 C Ascend310端测试核心代码 #include <iostream> #include <vector>#…

synchronized 关键字背后的锁升级流程

文章目录前言一、基本特点二、加锁过程总结前言 博主个人社区&#xff1a;开发与算法学习社区 博主个人主页&#xff1a;Killing Vibe的博客 欢迎大家加入&#xff0c;一起交流学习~~ 一、基本特点 结合多线程锁的策略, 我们就可以总结出, Synchronized 具有以下特性(只考虑 J…

基于51单片机的智能台灯设计

一.硬件方案 本文介绍了一种基于PWM调光的智能台灯设计。把单片机技术和PWM调光技术结合起来实现台灯光强的调节。即在不改变PWM方波周期的前提下&#xff0c;利用单片机控制PWM的占空比&#xff0c;从而来改变电压的大小实现灯光亮度的调节。 当人体在台灯的范围内且环…

linux驱动设备节点失踪之迷雾围城

前言 参考文章&#xff1a;无法生成设备节点 最后证实&#xff1a;是bootargs配置错误导致的&#xff0c;不过中间发现也是可以通过mdev -s间接解决的&#xff0c;算是学习经验吧。 misc驱动框架是linux内核驱动中最简单实用的框架了。记录一下今天调试misc驱动的问题。misc驱动…

笔试强训48天——day19

文章目录一. 单选1.二分查找的时间复杂度&#xff08;&#xff09;2. 有一个单向链表中有一个A、B两个相邻元素&#xff0c;有一个指针p指向元素A&#xff0c;现将一个指针r指向的S元素要插入3. 双向链表中有两个指针域,llink和rlink分别指向前驱和后继,设p指向链表中的一个结点…

spark底层原理理解--高级进阶

概念概念理解和解释备注窄依赖窄依赖指1个父RDD分区数据只被1个子RDD的分区使用&#xff0c;即一对一或多对一的关系。 分为两种映射情况&#xff1a;一个父RDD的分区对应于一个子RDD的分区&#xff0c;或者多个父RDD的分区对应于一个子RDD的分区。 1个子RDD的分区对应于1个父R…

深入理解JS作用域链与执行上下文

变量提升&#xff1a; 变量提升&#xff08; hoisting &#xff09;。 我可恨的 var 关键字&#xff1a; 你读完下面内容就会明白标题的含义&#xff0c;先来一段超级简单的代码&#xff1a; <script type"text/javascript">var str Hello JavaScript hoi…

【K8S】初探Kubernetes

文章目录什么是容器编排什么是KubernetesK8s 和 Docker 之间的关系Kubernetes的整体架构Master 里的组件构成Work Node 里的组件构成总结K8s 组件工作流程结束语什么是容器编排 在《Docker 进阶指南&#xff08;下&#xff09;- 使用Docker Compose编排多个容器》文章当中&…

文件缓冲区

本期介绍&#x1f356; 主要介绍&#xff1a;什么是文件缓冲区&#xff0c;文件缓冲区存在的意义是什么&#xff0c;文件缓冲区的证明&#x1f440;。 一、什么是文件缓冲区 每一个正在使用的文件&#xff0c;操作系统都会为其在内存中开辟一块区域&#xff0c;称之为&#xff…

【数据结构】带头双向链表的简单实现

目录前言链表的实现List.hList.c**ListCreate()****LTInit()****ListPushBack()****ListPopBack()****ListPrint()****ListPushFront()****ListPopFront()****ListFind()****ListInsert()****ListErase()**ListErase()test.c前言 该篇博客主要讲解了带头双向链表的实现和一些细…

Cadence Allegro DXF结构图的导入详细教程

很多消费类板卡的结构都是异形的&#xff0c;由专业的CAD结构工程师对其进行精准的设计&#xff0c;PCB布线工程师可以根据结构工程师提供的2D图&#xff08;DWG或DXF格式&#xff09;进行精准的导入操作&#xff0c;在PCB中定义板型结构。 同时&#xff0c;对于一些工控板或者…

Ajax--跨域与JSONP--案例-淘宝搜索

要实现的UI效果 获取用户输入的搜索关键词 为了获取到用户每次按下键盘输入的内容&#xff0c;需要监听输入框的 keyup 事件&#xff0c;示例代码如下&#xff1a; // 监听文本框的 keyup 事件$(#ipt).on(keyup, function() {// 获取用户输入的内容var keywords $(this).val…

支撑向量机

1、支持向量机算法原理 支持向量机&#xff08;Support Vetor Machine&#xff0c;SVM&#xff09;由Vapnik等人于1995年首先提出&#xff0c;在解决小样本、非线性及高维模式识别中表现出许多特有的优势&#xff0c;并推广到人脸识别、行人检测和文本分类等其他机器学习问题中…

HTML期末作业:基于html+css+javascript+jquery实现古诗词网页 学生网页设计作品 web前端开发技术 web课程设计 网页规划与设计

&#x1f389;精彩专栏推荐 &#x1f4ad;文末获取联系 ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业&#xff1a; 【&#x1f4da;毕设项目精品实战案例 (10…