C++每日一练:打家劫室(详解动态规划法)

news2024/11/23 8:59:37

文章目录

  • 前言
  • 一、题目
  • 二、分析
  • 三、代码
  • 总结


前言

这题目出得很有意思哈,打劫也是很有技术含量滴!不会点算法打劫这么粗暴的工作都干不好。
在这里插入图片描述


提示:以下是本篇文章正文内容,下面案例可供参考

一、题目

题目名称:
打家劫舍

题目描述:
一个小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

输入描述:
输入一个正整数n代表房屋的数量(n≤100),接着输入n个非负整数代表每间房屋的现金数量

输出描述:
小偷能偷取的最大金额。

示例1
输入
4
1 2 3 1

输出
4

二、分析

我们假设只有三个房间,事情就很简单了。做为专业小偷,我们知道,房屋编号是从0开始的,只能偷1号房屋或0号+2号房屋。为了取得最大战果,我们分别去看了看每个房屋能偷到多少。出门比较一下,就知道结果了。
我们逛完了三个房屋,现在站在第2号房屋门口来思考一下,就是选择0和2,或选1的问题。
我们把0+2能偷到的钱先记在2号房屋门上,把1号能偷到的钱记在1号门上,然后去看看3号房屋有多少钱可偷。这样1、2、3号房屋又成了一个同样的选择…
我们不停的在门上记录能偷到的钱,不停的用同样的方法选择。
拿示例来说,我们在1号房屋门上记上2毛,2号房屋门上记上4毛(0号加2号),然后和3号房屋来比较,显然4毛大于1号的2毛加3号的1毛。侦察完成,就偷0号加2号了!
再找个长点的例子:
1 2 3 2 9 1 2
同样先在1号房屋门上记上2毛,2号房屋门上记4毛(0号+2号),侦察完3号房屋后,就成了:
2 4 2 9 1 2
继续侦察下一家:
4 4 9 1 2
4 (13) 1 2
(13) 5 2
5 (15)
(15)
最后偷得15毛!

三、代码

#include <iostream>
#include <string>
#include <sstream>
#include <vector>
#include <algorithm>

using namespace std;

int solution(int n, std::vector<int>& vec){
    int result=0;
    // TODO:
    vector<int> tmp={vec[0], max(vec[0], vec[1])};
    if(n==1) return tmp[0];
    if(n==2) return tmp[1];
    for (int i=2; i<n; ++i){
        tmp[i] = max(tmp[i-1], tmp[i-2]+vec[i]);
    }
    result = tmp[n-1];
    return result;
}

int main() {

    int n;
    std::vector<int> vec;

    std::cin>>n;
    
    std::string line_0, token_0;
    getline(std::cin >> std::ws,line_0);
    std::stringstream tokens_0(line_0);
    while(std::getline(tokens_0, token_0, ' ')){
        vec.push_back(std::stoi(token_0));
    }
    

    int result = solution(n,vec);

    std::cout<<result<<std::endl;

    return 0;

max(vec[0], vec[1])这一句解决了前二个房屋的选择,因为第二个房屋我们必须选前两个中最大的。如果0号是最大的,就把1号变成0号一样,再来继续选择。
举例来看:
7 1 1 2
侦察前二个房屋后就是:
7 7 1 2
然后7 8 2
最后9
如果是这样的:
1 7 2 1
侦察前二个后就还是:
1 7 2 1
所以初始化的时候一定要考虑清楚!

总结

所谓动态规划:就是将问题划分为一系列子问题,求各子问题的最优解,然后以自底向上的方式递归地从子问题的最优解构造出整个问题的最优解。
在本例中,我们把n个房屋不停的当作三个房屋来处理。所以我们设计了一个tmp数组来存储过程数据。
动态规划和分治法有点像,都是把复杂问题分解成简单的小问题。
不过动态规划的子问题之间不是独立的,子问题的解往往会在下一个选择中被使用。
而分治法,一般会把一个复杂的问题分解成若干个独立的子问题,求解子问题后再合成本问题的解。今天的 “小艺照镜子” (本专栏的另一篇文章有详解)就是用分治法解的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/479672.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实现Newton方法的最小化函数(pytorch)

首先&#xff0c;我们要明确需求 def newton(theta, f, tol 1e-8, fscale1.0, maxit 100, max_half 20) ● theta是优化参数的初始值的一个向量。 ● f是要最小化的目标函数。该函数应将PyTorch张量作为输入&#xff0c;并返回一个张量。 ● tol是收敛容忍度。 ● fscale 粗…

【Leetcode -328.奇偶链表 - 725.分隔链表】

Leetcode Leetcode -328.奇偶链表Leetcode - 725.分隔链表 Leetcode -328.奇偶链表 题目&#xff1a;给定单链表的头节点 head &#xff0c;将所有索引为奇数的节点和索引为偶数的节点分别组合在一起&#xff0c;然后返回重新排序的列表。 第一个节点的索引被认为是 奇数 &am…

苏州百特电器有限公司网站设计

苏州百特电器有限公司网站设计 五一假期作业企业门户网站布局设计 基于 <div> 的企业门户网站设计 by 小喾苦 我这里仅仅是使用 html css 来实现这个网站的效果&#xff0c;并不是宣传这个网站(现在这个网站已经过时并且无法进入) 实现效果 https://xkk1.github.io/…

出差在外,远程访问企业局域网象过河ERP系统「内网穿透」

文章目录 概述1.查看象过河服务端端口2.内网穿透3. 异地公网连接4. 固定公网地址4.1 保留一个固定TCP地址4.2 配置固定TCP地址 5. 使用固定地址连接 转载自远程穿透文章&#xff1a;公网远程访问公司内网象过河ERP系统「内网穿透」 概述 ERP系统对于企业来说重要性不言而喻&am…

初识中央处理器CPU

目录 一、CPU功能 1.控制器功能 2.运算器功能 3.功能执行顺序 4.其他功能 二、CPU结构图 1.CPU与系统总线 2.CPU内部结构 3.运算器中的寄存器组 4.控制器中的寄存器组 三、执行指令的过程 1.指令周期的基本概念 2.完整的指令周期流程 3.数据通路 4.指令周期的数据…

React超级简单易懂全面的有关问题回答(面试)

目录 React事件机制&#xff1a; 2、React的事件和普通的HTML有什么不同&#xff1a; - 事件命名的规则不同&#xff0c;原生事件采用全小写&#xff0c;react事件采用小驼峰 3、React组件中怎么做事件代理&#xff1f;他的原理是什么&#xff1f; 4、React高阶组件、Rend…

【SpringBoot】 整合RabbitMQ 保证消息可靠性传递

生产者端 目录结构 导入依赖 修改yml 业务逻辑 测试结果 生产者端 目录结构 导入依赖 <dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter</artifactId></dependency>&…

无人机集群路径规划:淘金优化算法(Gold rush optimizer,GRO)提供MATLAB代码

一、淘金优化算法GRO 淘金优化算法&#xff08;Gold rush optimizer&#xff0c;GRO&#xff09;由Kamran Zolf于2023年提出&#xff0c;其灵感来自淘金热&#xff0c;模拟淘金者进行黄金勘探行为。 参考文献&#xff1a; K. Zolfi. Gold rush optimizer: A new population-ba…

Python小姿势 - #### Python技术博客:Python多线程编程

Python技术博客&#xff1a;Python多线程编程 你好&#xff0c;这里是自媒体技术博主Aurora&#xff0c;今天我想分享一下Python多线程编程。 首先&#xff0c;什么是多线程编程&#xff1f;多线程编程是一种让多个线程同时执行的编程方式&#xff0c;它可以让程序的执行更加高…

2023年华中杯C题计算结果

经过一晚上代码的编写&#xff0c;论文的写作&#xff0c;C题完整版论文已经发布&#xff0c; 注&#xff1a;蓝色字体为说明备注解释字体&#xff0c;不能出现在大家的论文里。黑色字体为论文部分&#xff0c;大家可以根据红色字体的注记进行摘抄。对应的详细的写作视频教程&…

推荐一款网站内链爬取python脚本

目标 使用 web-tools 提供的webSpider来爬取网站内链&#xff0c;并且将其导出。 webSpider介绍&#xff1a; 官网链接&#xff1a;https://web-tools.cn/web-spider 仓库地址&#xff1a;https://github.com/duerhong/web-spider Web Spider 专门用于爬取网站内链&#xf…

C++ srand()和rand()用法

参考C rand 与 srand 的用法 计算机的随机数都是由伪随机数&#xff0c;即是由小M多项式序列生成的&#xff0c;其中产生每个小序列都有一个初始值&#xff0c;即随机种子。&#xff08;注意&#xff1a; 小M多项式序列的周期是65535&#xff0c;即每次利用一个随机种子生成的随…

论文学习笔记:Transformer Attention Is All You Need

Transformer: Attention Is All You Need 2022 年年底&#xff0c;一个大语言模型 ChatGPT 横空出世&#xff0c;并且迅速点燃了普罗大众对 AI 的热情&#xff0c;短短两个月&#xff0c; ChatGPT 就成为了史上最快成为上亿月活的应用&#xff0c;并且持续受到关注&#xff0c…

【Vue2.0源码学习】变化侦测篇-Object的变化侦测

文章目录 1. 前言2. 使Object数据变得“可观测”3. 依赖收集3.1 什么是依赖收集3.2 何时收集依赖&#xff1f;何时通知依赖更新&#xff1f;3.3 把依赖收集到哪里 4. 依赖到底是谁5. 不足之处6. 总结 1. 前言 我们知道&#xff1a;数据驱动视图的关键点则在于我们如何知道数据发…

记录docker swarm的使用

在前面的几篇文章中我们依次学习了dockerfile、docker-compose的使用&#xff0c;接下来是docker有一个比较 重要的使用&#xff0c;docker swarm的使用&#xff0c;与dockerfile和docker-compose相比较而言&#xff0c;docker swarm是在 多个服务器或主机上创建容器集群服务准…

Leetcode——66. 加一

&#x1f4af;&#x1f4af;欢迎来到的热爱编程的小K的Leetcode的刷题专栏 文章目录 1、题目2、暴力模拟(自己的第一想法)3、官方题解 1、题目 给定一个由 整数 组成的 非空 数组所表示的非负整数&#xff0c;在该数的基础上加一。最高位数字存放在数组的首位&#xff0c; 数组…

CTF-PHP反序列化漏洞2-典型题目

作者&#xff1a;Eason_LYC 悲观者预言失败&#xff0c;十言九中。 乐观者创造奇迹&#xff0c;一次即可。 一个人的价值&#xff0c;在于他所拥有的。可以不学无术&#xff0c;但不能一无所有&#xff01; 技术领域&#xff1a;WEB安全、网络攻防 关注WEB安全、网络攻防。我的…

【纯属娱乐】随机森林预测双色球

目录 一、数据标准化二、预测代码三、后续 一、数据标准化 首先&#xff0c;我们需要对原始数据进行处理&#xff0c;将其转换为可用于机器学习的格式。我们可以将开奖号码中的红球和蓝球分开&#xff0c;将其转换为独热编码&#xff0c;然后将其与期数一起作为特征输入到机器…

ETL工具 - Kettle 查询、连接、统计、脚本算子介绍

一、 Kettle 上篇文章对 Kettle 流程、应用算子进行了介绍&#xff0c;本篇对查询、连接、统计、脚本算子进行讲解&#xff0c;下面是上篇文章的地址&#xff1a; ETL工具 - Kettle 流程、应用算子介绍 二、查询算子 数据输入使用 MySQL 表输入&#xff0c;表结构如下&#x…

给httprunnermanager接口自动化测试平台换点颜色瞧瞧

文章目录 一、背景1.1、修改注册表单的提示颜色1.2、修改后台代码&#xff1a;注册错误提示&#xff0c;最后提交注册&#xff0c;密码校验&#xff1b;1.3、修改了注册&#xff0c;那登录呢&#xff0c;也不能放过二、总结 一、背景 虽然咱给HttpRunnerManger引入进来&#xf…