【五一创作】使用Resnet残差网络对图像进行分类(猫十二分类,模型定义、训练、保存、预测)(二)

news2025/1/9 1:38:45

使用Resnet残差网络对图像进行分类

(猫十二分类,模型定义、训练、保存、预测)(二)

目录

(6)、数据集划分

(7)、训练集增强

(8)、装载数据集

(9)、初始化模型

(10)、模型训练

(11)、生成 result.csv

四、总结

五、参考资料


 接上篇文章

使用Resnet残差网络对图像进行分类(猫十二分类,模型定义、训练、保存、预测)(一)

(6)、数据集划分

#数据集划分
!paddlex --split_dataset --format ImageNet\
    --dataset_dir data/data10954/ImageNetDataset\
    --val_value 0.085\
    --test_value 0
2023-04-29 13:20:36 [INFO]	Dataset split starts...
2023-04-29 13:20:36 [INFO]	Dataset split done.
2023-04-29 13:20:36 [INFO]	Train samples: 1980
2023-04-29 13:20:36 [INFO]	Eval samples: 180
2023-04-29 13:20:36 [INFO]	Test samples: 0
2023-04-29 13:20:36 [INFO]	Split files saved in data/data10954/ImageNetDataset

运行时长:4.568秒结束时间:2023-04-29 13:20:37

(7)、训练集增强

# 训练集增强
from paddlex import transforms as T
train_transforms = T.Compose([
    T.MixupImage(
        alpha=1.5,
        beta=1.5,
        mixup_epoch=int(300 * 25. / 27)),
    T.Resize(
        target_size=438,
        interp='CUBIC'),
    # 以图像中心点扩散裁剪长宽为目标尺寸的正方形
    T.RandomCrop(360),
    # 以一定的概率对图像进行随机水平翻转
    T.RandomHorizontalFlip(0.5),
    # 以一定的概率对图像进行随机像素内容变换,可包括亮度、对比度、饱和度、色相角度、通道顺序的调整,模型训练时的数据增强操作
    T.RandomDistort(
        brightness_range=0.25,
        brightness_prob=0.5,
        contrast_range=0.25,
        contrast_prob=0.5,
        saturation_range=0.25,
        saturation_prob=0.5,
        hue_range=18.0,
        hue_prob=0.5),
    # 以一定的概率对图像进行高斯模糊
    T.RandomBlur(0.1),
    # 对图像进行标准化
    T.Normalize([0.4848, 0.4435, 0.4023], [0.2744, 0.2688, 0.2757])
])
# 验证集增强
eval_transforms = T.Compose([
    T.Resize(
        target_size=410,
        interp='AREA'),
    T.CenterCrop(360),
    T.Normalize([0.4848, 0.4435, 0.4023], [0.2744, 0.2688, 0.2757])
])

运行时长:7毫秒结束时间:2023-04-29 13:21:16

(8)、装载数据集

#装载数据集
import paddlex as pdx
train_dataset = pdx.datasets.ImageNet(
    data_dir='data/data10954/ImageNetDataset',
    file_list='data/data10954/ImageNetDataset/train_list.txt',
    label_list='data/data10954/ImageNetDataset/labels.txt',
    transforms=train_transforms,
    shuffle=True) # 是否需要对数据集中样本打乱顺序

eval_dataset = pdx.datasets.ImageNet(
    data_dir='data/data10954/ImageNetDataset',
    file_list='data/data10954/ImageNetDataset/val_list.txt',
    label_list='data/data10954/ImageNetDataset/labels.txt',
    transforms=eval_transforms)
2023-04-29 13:21:22 [INFO]	Starting to read file list from dataset...
2023-04-29 13:21:22 [INFO]	1980 samples in file data/data10954/ImageNetDataset/train_list.txt
2023-04-29 13:21:22 [INFO]	Starting to read file list from dataset...
2023-04-29 13:21:22 [INFO]	180 samples in file data/data10954/ImageNetDataset/val_list.txt

运行时长:37毫秒结束时间:2023-04-29 13:21:22

(9)、初始化模型

#初始化模型
model = pdx.cls.ResNet101_vd_ssld(
    num_classes=len(train_dataset.labels)
)

W0429 05:21:46.169178 184 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 11.2 W0429 05:21:46.173651 184 gpu_resources.cc:91] device: 0, cuDNN Version: 8.2.

运行时长:196毫秒结束时间:2023-04-29 13:22:38

(10)、模型训练

model.train(
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    num_epochs=420, #训练轮数
    train_batch_size=80, #一个step所用到的样本量
    warmup_steps=(len(train_dataset.file_list) // 80) * 6, #学习率从0经过steps轮迭代增长到设定的学习率
    learning_rate=0.025, # 学习率
    lr_decay_epochs=[40, 65, 115, 160, 205], #表示学习率在第几个epoch时衰减一次
    lr_decay_gamma=0.1, # 学习率衰减率

    save_interval_epochs=2, # 每几轮保存一次
    log_interval_steps=(len(train_dataset.file_list) // 80) * 7, # 训练日志输出间隔

    pretrain_weights='IMAGENET',
    #pretrain_weights (str or None): 若指定为'.pdparams'文件时,则从文件加载模型权重;
    #若为字符串'IMAGENET',则自动下载在ImageNet图片数据上预训练的模型权重;
    #若为None,则不使用预训练模型。默认为'IMAGENET'
    save_dir='output/ResNet101_vd_ssld',
    use_vdl=False)

 运行时长:26毫秒结束时间:2023-04-29 04:33:20

2023-04-29 13:22:47 [INFO]	Loading pretrained model from output/ResNet101_vd_ssld/pretrain/ResNet101_vd_ssld_pretrained.pdparams
2023-04-29 13:22:49 [WARNING]	[SKIP] Shape of pretrained params fc.weight doesn't match.(Pretrained: (2048, 1000), Actual: [2048, 12])
2023-04-29 13:22:49 [WARNING]	[SKIP] Shape of pretrained params fc.bias doesn't match.(Pretrained: (1000,), Actual: [12])
2023-04-29 13:22:49 [INFO]	There are 530/532 variables loaded into ResNet101_vd_ssld.
2023-04-29 13:23:20 [INFO]	[TRAIN] Epoch 1 finished, loss=2.4181073, acc1=0.18229167, acc5=0.5786458 .
2023-04-29 13:23:48 [INFO]	[TRAIN] Epoch 2 finished, loss=1.4139315, acc1=0.6390625, acc5=0.9541667 .
2023-04-29 13:23:48 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:23:50 [INFO]	[EVAL] Finished, Epoch=2, acc1=0.900000, acc5=1.000000 .
2023-04-29 13:23:56 [INFO]	Model saved in output/ResNet101_vd_ssld/best_model.
2023-04-29 13:23:56 [INFO]	Current evaluated best model on eval_dataset is epoch_2, acc1=0.9000000357627869
2023-04-29 13:24:01 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_2.
2023-04-29 13:24:29 [INFO]	[TRAIN] Epoch 3 finished, loss=0.5691645, acc1=0.81302077, acc5=0.9875 .
2023-04-29 13:24:58 [INFO]	[TRAIN] Epoch 4 finished, loss=0.44015732, acc1=0.84427077, acc5=0.9921875 .
2023-04-29 13:24:58 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:25:00 [INFO]	[EVAL] Finished, Epoch=4, acc1=0.850000, acc5=1.000000 .
2023-04-29 13:25:00 [INFO]	Current evaluated best model on eval_dataset is epoch_2, acc1=0.9000000357627869
2023-04-29 13:25:05 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_4.
2023-04-29 13:25:34 [INFO]	[TRAIN] Epoch 5 finished, loss=0.44497904, acc1=0.84375, acc5=0.9890625 .
2023-04-29 13:26:02 [INFO]	[TRAIN] Epoch 6 finished, loss=0.4761262, acc1=0.8322916, acc5=0.9875 .
2023-04-29 13:26:02 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:26:04 [INFO]	[EVAL] Finished, Epoch=6, acc1=0.908333, acc5=0.995833 .
2023-04-29 13:26:10 [INFO]	Model saved in output/ResNet101_vd_ssld/best_model.
2023-04-29 13:26:10 [INFO]	Current evaluated best model on eval_dataset is epoch_6, acc1=0.9083333015441895
2023-04-29 13:26:17 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_6.
2023-04-29 13:26:45 [INFO]	[TRAIN] Epoch=7/100, Step=24/24, loss=0.607006, acc1=0.812500, acc5=0.987500, lr=0.025000, time_each_step=1.19s, eta=0:51:10
2023-04-29 13:26:45 [INFO]	[TRAIN] Epoch 7 finished, loss=0.4677044, acc1=0.8328125, acc5=0.9890625 .
2023-04-29 13:27:14 [INFO]	[TRAIN] Epoch 8 finished, loss=0.44583225, acc1=0.8421876, acc5=0.9848959 .
2023-04-29 13:27:14 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:27:16 [INFO]	[EVAL] Finished, Epoch=8, acc1=0.941667, acc5=0.995833 .
2023-04-29 13:27:23 [INFO]	Model saved in output/ResNet101_vd_ssld/best_model.
2023-04-29 13:27:23 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:27:29 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_8.
2023-04-29 13:27:58 [INFO]	[TRAIN] Epoch 9 finished, loss=0.39136004, acc1=0.8625, acc5=0.9901042 .
2023-04-29 13:28:26 [INFO]	[TRAIN] Epoch 10 finished, loss=0.4166825, acc1=0.8484375, acc5=0.99010414 .
2023-04-29 13:28:26 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:28:28 [INFO]	[EVAL] Finished, Epoch=10, acc1=0.920833, acc5=1.000000 .
2023-04-29 13:28:28 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:28:31 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_10.
2023-04-29 13:28:59 [INFO]	[TRAIN] Epoch 11 finished, loss=0.31962064, acc1=0.88593745, acc5=0.9911458 .
2023-04-29 13:29:28 [INFO]	[TRAIN] Epoch 12 finished, loss=0.3115134, acc1=0.8885417, acc5=0.99062496 .
2023-04-29 13:29:28 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:29:30 [INFO]	[EVAL] Finished, Epoch=12, acc1=0.933333, acc5=1.000000 .
2023-04-29 13:29:30 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:29:33 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_12.
2023-04-29 13:30:01 [INFO]	[TRAIN] Epoch 13 finished, loss=0.31692782, acc1=0.8911459, acc5=0.9911458 .
2023-04-29 13:30:29 [INFO]	[TRAIN] Epoch=14/100, Step=24/24, loss=0.245570, acc1=0.912500, acc5=0.987500, lr=0.025000, time_each_step=1.18s, eta=0:42:2
2023-04-29 13:30:30 [INFO]	[TRAIN] Epoch 14 finished, loss=0.2632157, acc1=0.909375, acc5=0.9927084 .
2023-04-29 13:30:30 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:30:32 [INFO]	[EVAL] Finished, Epoch=14, acc1=0.925000, acc5=0.991667 .
2023-04-29 13:30:32 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:30:35 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_14.
2023-04-29 13:31:03 [INFO]	[TRAIN] Epoch 15 finished, loss=0.2779355, acc1=0.9072917, acc5=0.9875 .
2023-04-29 13:31:32 [INFO]	[TRAIN] Epoch 16 finished, loss=0.2853838, acc1=0.9010417, acc5=0.99114585 .
2023-04-29 13:31:32 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:31:34 [INFO]	[EVAL] Finished, Epoch=16, acc1=0.937500, acc5=1.000000 .
2023-04-29 13:31:34 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:31:37 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_16.
2023-04-29 13:32:05 [INFO]	[TRAIN] Epoch 17 finished, loss=0.26465186, acc1=0.90937495, acc5=0.99322915 .
2023-04-29 13:32:34 [INFO]	[TRAIN] Epoch 18 finished, loss=0.27762282, acc1=0.9036458, acc5=0.9947917 .
2023-04-29 13:32:34 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:32:36 [INFO]	[EVAL] Finished, Epoch=18, acc1=0.933333, acc5=0.995833 .
2023-04-29 13:32:36 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:32:39 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_18.
2023-04-29 13:33:07 [INFO]	[TRAIN] Epoch 19 finished, loss=0.258658, acc1=0.9114583, acc5=0.99375004 .
2023-04-29 13:33:36 [INFO]	[TRAIN] Epoch 20 finished, loss=0.25491306, acc1=0.9151042, acc5=0.9953125 .
2023-04-29 13:33:36 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:33:38 [INFO]	[EVAL] Finished, Epoch=20, acc1=0.937500, acc5=1.000000 .
2023-04-29 13:33:38 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:33:40 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_20.
2023-04-29 13:34:09 [INFO]	[TRAIN] Epoch=21/100, Step=24/24, loss=0.299951, acc1=0.887500, acc5=1.000000, lr=0.025000, time_each_step=1.18s, eta=0:38:48
2023-04-29 13:34:09 [INFO]	[TRAIN] Epoch 21 finished, loss=0.23813273, acc1=0.921875, acc5=0.99322915 .
2023-04-29 13:34:37 [INFO]	[TRAIN] Epoch 22 finished, loss=0.2311691, acc1=0.9208333, acc5=0.9942708 .
2023-04-29 13:34:37 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:34:39 [INFO]	[EVAL] Finished, Epoch=22, acc1=0.941667, acc5=0.995833 .
2023-04-29 13:34:39 [INFO]	Current evaluated best model on eval_dataset is epoch_8, acc1=0.9416666626930237
2023-04-29 13:34:45 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_22.
2023-04-29 13:35:13 [INFO]	[TRAIN] Epoch 23 finished, loss=0.24179737, acc1=0.92031246, acc5=0.9921875 .
2023-04-29 13:35:42 [INFO]	[TRAIN] Epoch 24 finished, loss=0.2174315, acc1=0.93020827, acc5=0.9953125 .
2023-04-29 13:35:42 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:35:44 [INFO]	[EVAL] Finished, Epoch=24, acc1=0.958333, acc5=0.995833 .
2023-04-29 13:35:47 [INFO]	Model saved in output/ResNet101_vd_ssld/best_model.
2023-04-29 13:35:47 [INFO]	Current evaluated best model on eval_dataset is epoch_24, acc1=0.9583333134651184
2023-04-29 13:35:50 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_24.
2023-04-29 13:36:18 [INFO]	[TRAIN] Epoch 25 finished, loss=0.23656587, acc1=0.9161458, acc5=0.99270827 .
2023-04-29 13:36:47 [INFO]	[TRAIN] Epoch 26 finished, loss=0.17985408, acc1=0.9348958, acc5=0.99322915 .
2023-04-29 13:36:47 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:36:49 [INFO]	[EVAL] Finished, Epoch=26, acc1=0.958333, acc5=0.995833 .
2023-04-29 13:36:49 [INFO]	Current evaluated best model on eval_dataset is epoch_24, acc1=0.9583333134651184
2023-04-29 13:36:52 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_26.
2023-04-29 13:37:20 [INFO]	[TRAIN] Epoch 27 finished, loss=0.21032478, acc1=0.9317708, acc5=0.9921875 .
2023-04-29 13:37:48 [INFO]	[TRAIN] Epoch=28/100, Step=24/24, loss=0.137395, acc1=0.962500, acc5=1.000000, lr=0.025000, time_each_step=1.18s, eta=0:35:17
2023-04-29 13:37:48 [INFO]	[TRAIN] Epoch 28 finished, loss=0.19942836, acc1=0.9317708, acc5=0.9937499 .
2023-04-29 13:37:48 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:37:50 [INFO]	[EVAL] Finished, Epoch=28, acc1=0.962500, acc5=0.995833 .
2023-04-29 13:37:53 [INFO]	Model saved in output/ResNet101_vd_ssld/best_model.
2023-04-29 13:37:53 [INFO]	Current evaluated best model on eval_dataset is epoch_28, acc1=0.9625000357627869
2023-04-29 13:37:56 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_28.
2023-04-29 13:38:24 [INFO]	[TRAIN] Epoch 29 finished, loss=0.18137391, acc1=0.93333334, acc5=0.9947917 .
2023-04-29 13:38:52 [INFO]	[TRAIN] Epoch 30 finished, loss=0.22040725, acc1=0.9223959, acc5=0.9927084 .
2023-04-29 13:38:52 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:38:54 [INFO]	[EVAL] Finished, Epoch=30, acc1=0.950000, acc5=0.995833 .
2023-04-29 13:38:54 [INFO]	Current evaluated best model on eval_dataset is epoch_28, acc1=0.9625000357627869
2023-04-29 13:38:57 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_30.
2023-04-29 13:39:26 [INFO]	[TRAIN] Epoch 31 finished, loss=0.18553962, acc1=0.93541664, acc5=0.9942708 .
2023-04-29 13:39:54 [INFO]	[TRAIN] Epoch 32 finished, loss=0.1747637, acc1=0.94427085, acc5=0.9937499 .
2023-04-29 13:39:54 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:39:56 [INFO]	[EVAL] Finished, Epoch=32, acc1=0.962500, acc5=1.000000 .
2023-04-29 13:39:56 [INFO]	Current evaluated best model on eval_dataset is epoch_28, acc1=0.9625000357627869
2023-04-29 13:39:59 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_32.
2023-04-29 13:40:27 [INFO]	[TRAIN] Epoch 33 finished, loss=0.21876918, acc1=0.9270833, acc5=0.9942708 .
2023-04-29 13:40:55 [INFO]	[TRAIN] Epoch 34 finished, loss=0.18000536, acc1=0.9395833, acc5=0.99270827 .
2023-04-29 13:40:55 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:40:57 [INFO]	[EVAL] Finished, Epoch=34, acc1=0.941667, acc5=1.000000 .
2023-04-29 13:40:57 [INFO]	Current evaluated best model on eval_dataset is epoch_28, acc1=0.9625000357627869
2023-04-29 13:41:00 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_34.
2023-04-29 13:41:28 [INFO]	[TRAIN] Epoch=35/100, Step=24/24, loss=0.168058, acc1=0.950000, acc5=1.000000, lr=0.025000, time_each_step=1.18s, eta=0:31:46
2023-04-29 13:41:28 [INFO]	[TRAIN] Epoch 35 finished, loss=0.18160756, acc1=0.9375, acc5=0.99322915 .
2023-04-29 13:41:57 [INFO]	[TRAIN] Epoch 36 finished, loss=0.15345208, acc1=0.95104164, acc5=0.996875 .
2023-04-29 13:41:57 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:41:59 [INFO]	[EVAL] Finished, Epoch=36, acc1=0.945833, acc5=0.995833 .
2023-04-29 13:41:59 [INFO]	Current evaluated best model on eval_dataset is epoch_28, acc1=0.9625000357627869
2023-04-29 13:42:02 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_36.
2023-04-29 13:42:30 [INFO]	[TRAIN] Epoch 37 finished, loss=0.17318165, acc1=0.940625, acc5=0.99635416 .
2023-04-29 13:42:59 [INFO]	[TRAIN] Epoch 38 finished, loss=0.1635019, acc1=0.9458334, acc5=0.9947917 .
2023-04-29 13:42:59 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:43:01 [INFO]	[EVAL] Finished, Epoch=38, acc1=0.962500, acc5=0.995833 .
2023-04-29 13:43:01 [INFO]	Current evaluated best model on eval_dataset is epoch_28, acc1=0.9625000357627869
2023-04-29 13:43:03 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_38.
2023-04-29 13:43:32 [INFO]	[TRAIN] Epoch 39 finished, loss=0.17445272, acc1=0.9401042, acc5=0.9942708 .
2023-04-29 13:44:00 [INFO]	[TRAIN] Epoch 40 finished, loss=0.18280022, acc1=0.9385417, acc5=0.9947917 .
2023-04-29 13:44:00 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:44:02 [INFO]	[EVAL] Finished, Epoch=40, acc1=0.966667, acc5=0.995833 .
2023-04-29 13:44:05 [INFO]	Model saved in output/ResNet101_vd_ssld/best_model.
2023-04-29 13:44:05 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:44:08 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_40.
2023-04-29 13:44:36 [INFO]	[TRAIN] Epoch 41 finished, loss=0.18835509, acc1=0.9328125, acc5=0.9932292 .
2023-04-29 13:45:04 [INFO]	[TRAIN] Epoch=42/100, Step=24/24, loss=0.164039, acc1=0.950000, acc5=1.000000, lr=0.025000, time_each_step=1.18s, eta=0:29:42
2023-04-29 13:45:04 [INFO]	[TRAIN] Epoch 42 finished, loss=0.1939249, acc1=0.9322917, acc5=0.9942708 .
2023-04-29 13:45:04 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:45:06 [INFO]	[EVAL] Finished, Epoch=42, acc1=0.954167, acc5=1.000000 .
2023-04-29 13:45:06 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:45:09 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_42.
2023-04-29 13:45:37 [INFO]	[TRAIN] Epoch 43 finished, loss=0.158045, acc1=0.9432292, acc5=0.9927084 .
2023-04-29 13:46:06 [INFO]	[TRAIN] Epoch 44 finished, loss=0.16796286, acc1=0.9390624, acc5=0.9973958 .
2023-04-29 13:46:06 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:46:08 [INFO]	[EVAL] Finished, Epoch=44, acc1=0.950000, acc5=0.995833 .
2023-04-29 13:46:08 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:46:10 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_44.
2023-04-29 13:46:39 [INFO]	[TRAIN] Epoch 45 finished, loss=0.13306127, acc1=0.9479167, acc5=0.996875 .
2023-04-29 13:47:07 [INFO]	[TRAIN] Epoch 46 finished, loss=0.17995667, acc1=0.93906254, acc5=0.9942708 .
2023-04-29 13:47:07 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:47:10 [INFO]	[EVAL] Finished, Epoch=46, acc1=0.945833, acc5=1.000000 .
2023-04-29 13:47:10 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:47:14 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_46.
2023-04-29 13:47:42 [INFO]	[TRAIN] Epoch 47 finished, loss=0.15355453, acc1=0.94947916, acc5=0.996875 .
2023-04-29 13:48:11 [INFO]	[TRAIN] Epoch 48 finished, loss=0.12802142, acc1=0.9619792, acc5=0.9979167 .
2023-04-29 13:48:11 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:48:13 [INFO]	[EVAL] Finished, Epoch=48, acc1=0.950000, acc5=0.995833 .
2023-04-29 13:48:13 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:48:16 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_48.
2023-04-29 13:48:44 [INFO]	[TRAIN] Epoch=49/100, Step=24/24, loss=0.168833, acc1=0.937500, acc5=0.987500, lr=0.002500, time_each_step=1.18s, eta=0:25:4
2023-04-29 13:48:44 [INFO]	[TRAIN] Epoch 49 finished, loss=0.1222587, acc1=0.9536459, acc5=0.9963541 .
2023-04-29 13:49:12 [INFO]	[TRAIN] Epoch 50 finished, loss=0.11258652, acc1=0.96250004, acc5=0.9979167 .
2023-04-29 13:49:13 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:49:15 [INFO]	[EVAL] Finished, Epoch=50, acc1=0.958333, acc5=0.995833 .
2023-04-29 13:49:15 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:49:17 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_50.
2023-04-29 13:49:46 [INFO]	[TRAIN] Epoch 51 finished, loss=0.10442413, acc1=0.9635417, acc5=0.99583334 .
2023-04-29 13:50:14 [INFO]	[TRAIN] Epoch 52 finished, loss=0.105671056, acc1=0.9640625, acc5=0.996875 .
2023-04-29 13:50:14 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:50:16 [INFO]	[EVAL] Finished, Epoch=52, acc1=0.950000, acc5=0.995833 .
2023-04-29 13:50:16 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:50:21 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_52.
2023-04-29 13:50:49 [INFO]	[TRAIN] Epoch 53 finished, loss=0.099631034, acc1=0.9661458, acc5=0.99583334 .
2023-04-29 13:51:18 [INFO]	[TRAIN] Epoch 54 finished, loss=0.08079084, acc1=0.9744792, acc5=0.99843746 .
2023-04-29 13:51:18 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:51:20 [INFO]	[EVAL] Finished, Epoch=54, acc1=0.950000, acc5=0.995833 .
2023-04-29 13:51:20 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:51:25 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_54.
2023-04-29 13:51:54 [INFO]	[TRAIN] Epoch 55 finished, loss=0.08740174, acc1=0.96562505, acc5=0.99895835 .
2023-04-29 13:52:22 [INFO]	[TRAIN] Epoch=56/100, Step=24/24, loss=0.081490, acc1=0.975000, acc5=0.987500, lr=0.002500, time_each_step=1.18s, eta=0:21:34
2023-04-29 13:52:22 [INFO]	[TRAIN] Epoch 56 finished, loss=0.09467447, acc1=0.96718746, acc5=0.9994791 .
2023-04-29 13:52:22 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:52:24 [INFO]	[EVAL] Finished, Epoch=56, acc1=0.950000, acc5=0.995833 .
2023-04-29 13:52:24 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:52:29 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_56.
2023-04-29 13:52:58 [INFO]	[TRAIN] Epoch 57 finished, loss=0.08061715, acc1=0.97239584, acc5=0.9984376 .
2023-04-29 13:53:26 [INFO]	[TRAIN] Epoch 58 finished, loss=0.096425116, acc1=0.96875, acc5=0.9947917 .
2023-04-29 13:53:26 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:53:28 [INFO]	[EVAL] Finished, Epoch=58, acc1=0.954167, acc5=0.995833 .
2023-04-29 13:53:28 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:53:34 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_58.
2023-04-29 13:54:02 [INFO]	[TRAIN] Epoch 59 finished, loss=0.09276194, acc1=0.9682291, acc5=0.9984376 .
2023-04-29 13:54:30 [INFO]	[TRAIN] Epoch 60 finished, loss=0.08393594, acc1=0.971875, acc5=0.9979167 .
2023-04-29 13:54:30 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:54:32 [INFO]	[EVAL] Finished, Epoch=60, acc1=0.954167, acc5=0.995833 .
2023-04-29 13:54:32 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:54:38 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_60.
2023-04-29 13:55:06 [INFO]	[TRAIN] Epoch 61 finished, loss=0.07893957, acc1=0.9739583, acc5=0.9973958 .
2023-04-29 13:55:35 [INFO]	[TRAIN] Epoch 62 finished, loss=0.095089525, acc1=0.9713542, acc5=0.99635416 .
2023-04-29 13:55:35 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:55:37 [INFO]	[EVAL] Finished, Epoch=62, acc1=0.954167, acc5=1.000000 .
2023-04-29 13:55:37 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:55:42 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_62.
2023-04-29 13:56:10 [INFO]	[TRAIN] Epoch=63/100, Step=24/24, loss=0.020284, acc1=1.000000, acc5=1.000000, lr=0.002500, time_each_step=1.18s, eta=0:18:10
2023-04-29 13:56:10 [INFO]	[TRAIN] Epoch 63 finished, loss=0.0862158, acc1=0.96875, acc5=0.996875 .
2023-04-29 13:56:39 [INFO]	[TRAIN] Epoch 64 finished, loss=0.08045288, acc1=0.9739583, acc5=0.9973958 .
2023-04-29 13:56:39 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:56:41 [INFO]	[EVAL] Finished, Epoch=64, acc1=0.954167, acc5=1.000000 .
2023-04-29 13:56:41 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:56:46 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_64.
2023-04-29 13:57:15 [INFO]	[TRAIN] Epoch 65 finished, loss=0.07768077, acc1=0.97343755, acc5=0.99895835 .
2023-04-29 13:57:43 [INFO]	[TRAIN] Epoch 66 finished, loss=0.079841435, acc1=0.9755208, acc5=0.9979167 .
2023-04-29 13:57:43 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:57:45 [INFO]	[EVAL] Finished, Epoch=66, acc1=0.958333, acc5=0.995833 .
2023-04-29 13:57:45 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:57:51 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_66.
2023-04-29 13:58:19 [INFO]	[TRAIN] Epoch 67 finished, loss=0.09812697, acc1=0.9635417, acc5=0.9979167 .
2023-04-29 13:58:47 [INFO]	[TRAIN] Epoch 68 finished, loss=0.0780992, acc1=0.9734375, acc5=0.9973958 .
2023-04-29 13:58:48 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:58:50 [INFO]	[EVAL] Finished, Epoch=68, acc1=0.958333, acc5=0.995833 .
2023-04-29 13:58:50 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:58:55 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_68.
2023-04-29 13:59:23 [INFO]	[TRAIN] Epoch 69 finished, loss=0.06367198, acc1=0.9765625, acc5=0.9984376 .
2023-04-29 13:59:52 [INFO]	[TRAIN] Epoch=70/100, Step=24/24, loss=0.024267, acc1=0.987500, acc5=1.000000, lr=0.002500, time_each_step=1.18s, eta=0:14:38
2023-04-29 13:59:52 [INFO]	[TRAIN] Epoch 70 finished, loss=0.06689284, acc1=0.9734375, acc5=0.9973958 .
2023-04-29 13:59:52 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 13:59:54 [INFO]	[EVAL] Finished, Epoch=70, acc1=0.962500, acc5=0.995833 .
2023-04-29 13:59:54 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 13:59:59 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_70.
2023-04-29 14:00:28 [INFO]	[TRAIN] Epoch 71 finished, loss=0.08160842, acc1=0.971875, acc5=0.9979167 .
2023-04-29 14:00:56 [INFO]	[TRAIN] Epoch 72 finished, loss=0.068439595, acc1=0.97812504, acc5=0.9973958 .
2023-04-29 14:00:56 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:00:58 [INFO]	[EVAL] Finished, Epoch=72, acc1=0.958333, acc5=0.995833 .
2023-04-29 14:00:58 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:01:04 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_72.
2023-04-29 14:01:32 [INFO]	[TRAIN] Epoch 73 finished, loss=0.06792923, acc1=0.9776042, acc5=0.9984376 .
2023-04-29 14:02:01 [INFO]	[TRAIN] Epoch 74 finished, loss=0.07590193, acc1=0.97552085, acc5=0.9984376 .
2023-04-29 14:02:01 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:02:03 [INFO]	[EVAL] Finished, Epoch=74, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:02:03 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:02:06 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_74.
2023-04-29 14:02:34 [INFO]	[TRAIN] Epoch 75 finished, loss=0.09295172, acc1=0.9661458, acc5=0.99322915 .
2023-04-29 14:03:03 [INFO]	[TRAIN] Epoch 76 finished, loss=0.075549096, acc1=0.9750001, acc5=0.99635416 .
2023-04-29 14:03:03 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:03:05 [INFO]	[EVAL] Finished, Epoch=76, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:03:05 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:03:09 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_76.
2023-04-29 14:03:37 [INFO]	[TRAIN] Epoch=77/100, Step=24/24, loss=0.061007, acc1=0.975000, acc5=1.000000, lr=0.000250, time_each_step=1.18s, eta=0:11:16
2023-04-29 14:03:37 [INFO]	[TRAIN] Epoch 77 finished, loss=0.07366269, acc1=0.971875, acc5=0.9994791 .
2023-04-29 14:04:05 [INFO]	[TRAIN] Epoch 78 finished, loss=0.07251313, acc1=0.9770834, acc5=0.9973958 .
2023-04-29 14:04:05 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:04:07 [INFO]	[EVAL] Finished, Epoch=78, acc1=0.958333, acc5=0.995833 .
2023-04-29 14:04:07 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:04:10 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_78.
2023-04-29 14:04:38 [INFO]	[TRAIN] Epoch 79 finished, loss=0.07673622, acc1=0.9765625, acc5=0.9958334 .
2023-04-29 14:05:06 [INFO]	[TRAIN] Epoch 80 finished, loss=0.068322025, acc1=0.9786458, acc5=0.9984376 .
2023-04-29 14:05:07 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:05:09 [INFO]	[EVAL] Finished, Epoch=80, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:05:09 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:05:14 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_80.
2023-04-29 14:05:43 [INFO]	[TRAIN] Epoch 81 finished, loss=0.081926815, acc1=0.97239584, acc5=0.9973958 .
2023-04-29 14:06:11 [INFO]	[TRAIN] Epoch 82 finished, loss=0.07687502, acc1=0.97499996, acc5=0.9973958 .
2023-04-29 14:06:11 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:06:13 [INFO]	[EVAL] Finished, Epoch=82, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:06:13 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:06:18 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_82.
2023-04-29 14:06:46 [INFO]	[TRAIN] Epoch 83 finished, loss=0.076094665, acc1=0.9744792, acc5=0.996875 .
2023-04-29 14:07:14 [INFO]	[TRAIN] Epoch=84/100, Step=24/24, loss=0.025069, acc1=0.987500, acc5=1.000000, lr=0.000250, time_each_step=1.18s, eta=0:7:48
2023-04-29 14:07:14 [INFO]	[TRAIN] Epoch 84 finished, loss=0.07510537, acc1=0.97552085, acc5=0.99635416 .
2023-04-29 14:07:15 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:07:17 [INFO]	[EVAL] Finished, Epoch=84, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:07:17 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:07:20 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_84.
2023-04-29 14:07:48 [INFO]	[TRAIN] Epoch 85 finished, loss=0.08195982, acc1=0.97239584, acc5=0.9963541 .
2023-04-29 14:08:16 [INFO]	[TRAIN] Epoch 86 finished, loss=0.07372735, acc1=0.97239584, acc5=0.9979167 .
2023-04-29 14:08:16 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:08:18 [INFO]	[EVAL] Finished, Epoch=86, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:08:18 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:08:21 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_86.
2023-04-29 14:08:49 [INFO]	[TRAIN] Epoch 87 finished, loss=0.06814042, acc1=0.9776042, acc5=0.9984376 .
2023-04-29 14:09:18 [INFO]	[TRAIN] Epoch 88 finished, loss=0.0976159, acc1=0.9703124, acc5=0.996875 .
2023-04-29 14:09:18 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:09:20 [INFO]	[EVAL] Finished, Epoch=88, acc1=0.954167, acc5=0.995833 .
2023-04-29 14:09:20 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:09:24 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_88.
2023-04-29 14:09:53 [INFO]	[TRAIN] Epoch 89 finished, loss=0.055377375, acc1=0.98072916, acc5=0.9979167 .
2023-04-29 14:10:21 [INFO]	[TRAIN] Epoch 90 finished, loss=0.07136932, acc1=0.9744792, acc5=0.9979167 .
2023-04-29 14:10:21 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:10:23 [INFO]	[EVAL] Finished, Epoch=90, acc1=0.954167, acc5=1.000000 .
2023-04-29 14:10:23 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:10:29 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_90.
2023-04-29 14:10:57 [INFO]	[TRAIN] Epoch=91/100, Step=24/24, loss=0.012872, acc1=1.000000, acc5=1.000000, lr=0.000250, time_each_step=1.18s, eta=0:4:24
2023-04-29 14:10:57 [INFO]	[TRAIN] Epoch 91 finished, loss=0.07514046, acc1=0.9739583, acc5=0.99895835 .
2023-04-29 14:11:25 [INFO]	[TRAIN] Epoch 92 finished, loss=0.08457449, acc1=0.9677084, acc5=0.99895835 .
2023-04-29 14:11:25 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:11:27 [INFO]	[EVAL] Finished, Epoch=92, acc1=0.958333, acc5=1.000000 .
2023-04-29 14:11:27 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:11:30 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_92.
2023-04-29 14:11:58 [INFO]	[TRAIN] Epoch 93 finished, loss=0.06884056, acc1=0.9802084, acc5=0.9984376 .
2023-04-29 14:12:27 [INFO]	[TRAIN] Epoch 94 finished, loss=0.09393544, acc1=0.9682291, acc5=0.99635416 .
2023-04-29 14:12:27 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:12:29 [INFO]	[EVAL] Finished, Epoch=94, acc1=0.958333, acc5=1.000000 .
2023-04-29 14:12:29 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:12:31 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_94.
2023-04-29 14:12:59 [INFO]	[TRAIN] Epoch 95 finished, loss=0.066801436, acc1=0.97812504, acc5=0.9984376 .
2023-04-29 14:13:28 [INFO]	[TRAIN] Epoch 96 finished, loss=0.08267576, acc1=0.9713542, acc5=0.9979167 .
2023-04-29 14:13:28 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:13:30 [INFO]	[EVAL] Finished, Epoch=96, acc1=0.954167, acc5=1.000000 .
2023-04-29 14:13:30 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:13:33 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_96.
2023-04-29 14:14:01 [INFO]	[TRAIN] Epoch 97 finished, loss=0.07954182, acc1=0.9708333, acc5=0.99895835 .
2023-04-29 14:14:29 [INFO]	[TRAIN] Epoch=98/100, Step=24/24, loss=0.131309, acc1=0.962500, acc5=1.000000, lr=0.000250, time_each_step=1.18s, eta=0:0:58
2023-04-29 14:14:29 [INFO]	[TRAIN] Epoch 98 finished, loss=0.07684819, acc1=0.9765625, acc5=0.996875 .
2023-04-29 14:14:30 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:14:32 [INFO]	[EVAL] Finished, Epoch=98, acc1=0.958333, acc5=0.995833 .
2023-04-29 14:14:32 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:14:34 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_98.
2023-04-29 14:15:02 [INFO]	[TRAIN] Epoch 99 finished, loss=0.08056358, acc1=0.96875, acc5=0.996875 .
2023-04-29 14:15:31 [INFO]	[TRAIN] Epoch 100 finished, loss=0.08144415, acc1=0.9760416, acc5=0.99635416 .
2023-04-29 14:15:31 [INFO]	Start to evaluate(total_samples=180, total_steps=3)...
2023-04-29 14:15:33 [INFO]	[EVAL] Finished, Epoch=100, acc1=0.958333, acc5=0.995833 .
2023-04-29 14:15:33 [INFO]	Current evaluated best model on eval_dataset is epoch_40, acc1=0.9666666984558105
2023-04-29 14:15:36 [INFO]	Model saved in output/ResNet101_vd_ssld/epoch_100.
运行时长:3168.472秒结束时间:2023-04-29 14:15:36
import paddlex as pdx
#model = pdx.load_model('output/ResNet101_vd_ssld/epoch_40') # 加载模型
model = pdx.load_model('/home/aistudio/output/ResNet101_vd_ssld/best_model/model.yml') # 加载模型
model.get_model_info() # 显示信息

(11)、生成 result.csv

#生成 work/result.csv
import glob

test_list = glob.glob('data/data10954/cat_12_test/*.jpg')
test_df = pd.DataFrame() # 创建表结构

for i in range(len(test_list)):
    img = Image.open(test_list[i]).convert('RGB')
    img = np.asarray(img, dtype='float32') # 转换数据类型

    result = model.predict(img[:, :, [2, 1, 0]]) # 预测结果
    test_df.at[i, 'name'] = str(test_list[i]).split('/')[-1] # 文件名
    test_df.at[i, 'cls'] = int(result[0]['category_id']) # 类别

test_df[['name']] = test_df[['name']].astype(str)
test_df[['cls']] = test_df[['cls']].astype(int)
test_df.to_csv('work/result.csv', index=False, header=False) # 生成csv文件

test_df.head()
namecls
0aJfHX1egSQnbujLyYpxITv3iPd0CBF98.jpg5
1xS3d4XNZ2YGRtaBH6TCVbmJvghiOlAIQ.jpg8
2xSJLM7Z4fQRdz809DjcvClUnXopymPwt.jpg2
3P8r4NWa3wQ7OIp9jzbDfteBgxdYKAGEL.jpg9
48TMA06Nnzor2Gfei5H1h3svPYX4uVSmD.jpg3

运行时长:16.529秒结束时间:2023-04-29 14:33:19

提交submit.csv,得分0.9375

namecls
0aJfHX1egSQnbujLyYpxITv3iPd0CBF98.jpg5
1xS3d4XNZ2YGRtaBH6TCVbmJvghiOlAIQ.jpg8
2xSJLM7Z4fQRdz809DjcvClUnXopymPwt.jpg2
3P8r4NWa3wQ7OIp9jzbDfteBgxdYKAGEL.jpg9
48TMA06Nnzor2Gfei5H1h3svPYX4uVSmD.jpg3

运行时长:18.988秒结束时间:2023-04-29 15:47:24

0.95

namecls
0aJfHX1egSQnbujLyYpxITv3iPd0CBF98.jpg5
1xS3d4XNZ2YGRtaBH6TCVbmJvghiOlAIQ.jpg8
2xSJLM7Z4fQRdz809DjcvClUnXopymPwt.jpg8
3P8r4NWa3wQ7OIp9jzbDfteBgxdYKAGEL.jpg5
48TMA06Nnzor2Gfei5H1h3svPYX4uVSmD.jpg5

运行时长:16.367秒结束时间:2023-04-29 18:10:11

四、总结

  图像分类顾名思义就是一个模式分类问题,它的目标是将不同的图像,划分到不同的类别,实现最小的分类误差。

  图像分类是计算机视觉中最基础的任务,基本上深度学习模型的发展史就是图像分类任务提升的发展历史,不过图像分类并不是那么简单,也没有被完全解决。图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务。这里面还有很多需要继续学习的地方。

  训练模型时需要注意次数,100次训练得分0.9375,训练350次得分0.41667

 五、参考资料

基线项目,由飞桨PPDE一心炼银提供
https://aistudio.baidu.com/aistudio/projectdetail/4243146

baseline 视频解析
https://pan.baidu.com/s/1f3UauRYlenFeB3XJGSIZDg
提取码:yinx

项目:https://aistudio.baidu.com/aistudio/projectdetail/3461935

项目:https://aistudio.baidu.com/aistudio/projectdetail/3906013

项目:https://blog.csdn.net/m0_63642362/article/details/128005486

项目:https://blog.csdn.net/m0_63642362/article/details/128005486
项目:https://blog.csdn.net/weixin_45014721/article/details/120887871
项目:https://blog.csdn.net/weixin_52263256/article/details/130176944

使用Resnet残差网络对图像进行分类(猫十二分类,模型定义、训练、保存、预测)(一)

           推荐阅读:

给照片换底色(python+opencv)

计算机视觉__基本图像操作(显示、读取、保存)直方图(颜色直方图、灰度直方图)直方图均衡化(调节图像亮度、对比度)

 语音识别实战(python代码)(一)

 人工智能基础篇

 计算机视觉基础__图像特征

93d65dbd09604c4a8ed2c01df0eebc38.png

 matplotlib 自带绘图样式效果展示速查(28种,全)

074cd3c255224c5aa21ff18fdc25053c.png

Three.js实例详解___旋转的精灵女孩(附完整代码和资源)(一)

fe88b78e78694570bf2d850ce83b1f69.png

cb4b0d4015404390a7b673a2984d676a.png

立体多层玫瑰绘图源码__玫瑰花python 绘图源码集锦

 Python 3D可视化(一)

 让你的作品更出色——词云Word Cloud的制作方法(基于python,WordCloud,stylecloud)

e84d6708316941d49a79ddd4f7fe5b27.png

938bc5a8bb454a41bfe0d4185da845dc.jpeg

0a4256d5e96d4624bdca36433237080b.png

 python Format()函数的用法___实例详解(一)(全,例多)___各种格式化替换,format对齐打印

 用代码写出浪漫__合集(python、matplotlib、Matlab、java绘制爱心、玫瑰花、前端特效玫瑰、爱心)

python爱心源代码集锦(18款)

dc8796ddccbf4aec98ac5d3e09001348.jpeg

0f09e73712d149ff90f0048a096596c6.png

40e8b4631e2b486bab2a4ebb5bc9f410.png

 Python中Print()函数的用法___实例详解(全,例多)

 Python函数方法实例详解全集(更新中...)

 《 Python List 列表全实例详解系列(一)》__系列总目录、列表概念

09e08f86f127431cbfdfe395aa2f8bc9.png

用代码过中秋,python海龟月饼你要不要尝一口?

 python练习题目录

03ed644f9b1d411ba41c59e0a5bdcc61.png

daecd7067e7c45abb875fc7a1a469f23.png

17b403c4307c4141b8544d02f95ea06c.png

草莓熊python turtle绘图(风车版)附源代码

 ​草莓熊python turtle绘图代码(玫瑰花版)附源代码

 ​草莓熊python绘图(春节版,圣诞倒数雪花版)附源代码

4d9032c9cdf54f5f9193e45e4532898c.png

c5feeb25880d49c085b808bf4e041c86.png

 巴斯光年python turtle绘图__附源代码

皮卡丘python turtle海龟绘图(电力球版)附源代码

80007dbf51944725bf9cf4cfc75c5a13.png

1ab685d264ed4ae5b510dc7fbd0d1e55.jpeg

1750390dd9da4b39938a23ab447c6fb6.jpeg

 Node.js (v19.1.0npm 8.19.3) vue.js安装配置教程(超详细)

 色彩颜色对照表(一)(16进制、RGB、CMYK、HSV、中英文名)

2023年4月多家权威机构____编程语言排行榜__薪酬状况

aa17177aec9b4e5eb19b5d9675302de8.png

38266b5036414624875447abd5311e4d.png

6824ba7870344be68efb5c5f4e1dbbcf.png

 手机屏幕坏了____怎么把里面的资料导出(18种方法)

【CSDN云IDE】个人使用体验和建议(含超详细操作教程)(python、webGL方向)

 查看jdk安装路径,在windows上实现多个java jdk的共存解决办法,安装java19后终端乱码的解决

vue3 项目搭建教程(基于create-vue,vite,Vite + Vue)

fea225cb9ec14b60b2d1b797dd8278a2.png

bba02a1c4617422c9fbccbf5325850d9.png

37d6aa3e03e241fa8db72ccdfb8f716b.png

2023年春节祝福第二弹——送你一只守护兔,让它温暖每一个你【html5 css3】画会动的小兔子,炫酷充电,字体特

 别具一格,原创唯美浪漫情人节表白专辑,(复制就可用)(html5,css3,svg)表白爱心代码(4套)

SVG实例详解系列(一)(svg概述、位图和矢量图区别(图解)、SVG应用实例)

5d409c8f397a45c986ca2af7b7e725c9.png

6176c4061c72430eb100750af6fc4d0e.png

1f53fb9c6e8b4482813326affe6a82ff.png

【程序人生】卡塔尔世界杯元素python海龟绘图(附源代码),世界杯主题前端特效5个(附源码)HTML+CSS+svg绘制精美彩色闪灯圣诞树,HTML+CSS+Js实时新年时间倒数倒计时(附源代码)

 2023春节祝福系列第一弹(上)(放飞祈福孔明灯,祝福大家身体健康)(附完整源代码及资源免费下载)

fffa2098008b4dc68c00a172f67c538d.png

5218ac5338014f389c21bdf1bfa1c599.png

c6374d75c29942f2aa577ce9c5c2e12b.png

 tomcat11、tomcat10 安装配置(Windows环境)(详细图文)

 Tomcat端口配置(详细)

 Tomcat 启动闪退问题解决集(八大类详细)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/478507.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

山东专升本计算机第十一章-新一代信息技术

新一代信息技术 物联网 概念 物联网就是物物相连的互联网,其核心和基础仍然是互联网 计算机,互联网之后信息产业发展的第三次浪潮 推入人类进入智能时代,又称物联时代 三大特征 全面感知 可靠传递 智能处理 • 物联网的最核心 技术架…

阿里云g8i服务器ECS通用型服务器CPU处理器性能测评

阿里云服务器ECS通用型实例规格族g8i采用2.7 GHz主频的Intel Xeon(Sapphire Rapids) Platinum 8475B处理器,3.2 GHz睿频,g8i实例采用阿里云全新CIPU架构,可提供稳定的算力输出、更强劲的I/O引擎以及芯片级的安全加固。阿里云百科分享阿里云服…

JavaScript 入门(1)

script 标签 <scrtipt> 标签可以插入到HTML中的任何位置在很老的代码中需使用type属性&#xff0c;但是现在的代码中不需要 <script type"text/javascript"><!-- ... //--></script>外部脚本 通过src 属性将脚本添加到HTML中 <script …

Maven的全面讲解及如何安装使用

Maven是一种流行的Java项目管理工具&#xff0c;可用于构建、测试、打包和部署Java应用程序。本文将介绍Maven的概念、安装配置、使用方法、生命周期以及IDEA集成Maven的方法。 Maven的概念 Maven是一种基于项目对象模型&#xff08;POM&#xff09;的构建工具。POM是一个XML…

【C++】位运算类题目总结

文章目录 一. 位运算符脑图二. 相关题目1. 统计二进制数中0的个数2. 数组中只出现一次的数字3. 数组中只出现一次的数字 II4. 不用加减乘除做加法 一. 位运算符脑图 二. 相关题目 1. 统计二进制数中0的个数 解题思路&#xff1a;x & (x-1)&#xff1b;它的作用是每次循环…

系统集成项目管理工程师 笔记(第18章:项目风险管理)

文章目录 18.1.2 风险的分类 54318.1.3 风险的性质 544项目风险管理6个过程&#xff08;风险管理、识别风险、实施定性风险分析、实施定量风险分析、规划风险应对、控制风险&#xff09;组织和干系人的风险态度影响因素18.3.3 规划风险管理的输出 550风险识别的原则18.4.2 识别…

针对Vue前后端分离项目的渗透思路

引言 在目前的开发环境下&#xff0c;越来越多的厂商选择 Vue.js 来实现前端功能的编写&#xff0c;且成熟的前端框架已经可以实现后端代码实现的功能&#xff0c;导致后端目前只负责提供 Api 接口和文档&#xff0c;方便前端的同时去调用。本文主要介绍如何针对这类前后端分离…

如何利用几何坐标变换后纠正技术实现倾斜摄影三维模型数据拼接?

如何利用几何坐标变换后纠正技术实现倾斜摄影三维模型数据拼接&#xff1f; 倾斜摄影三维模型数据拼接是指将多个倾斜摄影数据集合并为一个完整的三维模型。在这个过程中&#xff0c;由于不同数据集之间的相对位置和姿态不同&#xff0c;需要进行几何坐标变换以实现数据拼接。…

借用AI工具为视频添加中文字幕,消除语言障碍,母语环境最快速地学习

由于chatgpt的启动&#xff0c;感觉语言已经完全不会成为学习的障碍&#xff0c;突发奇想&#xff0c;在我们查看youtube视频的时候&#xff0c;有没有方便的工具能够将其字幕翻译为中文。这样能够极大提高在youtube学习的效率&#xff0c;于是顺手问了一下ChatGPT&#xff0c;…

Nginx—在linux的ubuntu系统上的安装使用

前言: 有关Nginx的基础知识和使用都在这里Nginx简介和快速入门_北岭山脚鼠鼠的博客-CSDN博客 常用命令: cd /usr/local/nginx/sbin/ ./nginx 启动 ./nginx -s stop 停止 ./nginx -s quit 安全退出 ./nginx -s reload 重新加载配置文件(常用) //在修改配置文件之后使用 p…

教你部署chatgpt商业版源码,支持卡密开通国内使用

教你部署chatgpt商业版源码&#xff0c;支持卡密开通国内使用 当今&#xff0c;人工智能技术在各个领域的应用越来越广泛&#xff0c;其中自然语言处理是非常重要的一环。OpenAI 的 GPT 模型是自然语言处理领域的一项重要技术&#xff0c;它可以根据已有的文本数据&#xff0c;…

Java 怎样实现代理模式,有什么优缺点

一、介绍 代理模式是一种常见的设计模式&#xff0c;它可以为其他对象提供一种代理以控制对这个对象的访问。代理对象具有与被代理对象相同的接口&#xff0c;客户端无需知道代理对象和被代理对象的区别。代理模式可以应用于各种不同的场景&#xff0c;例如远程代理、虚拟代理…

Ubantu docker学习笔记(九)容器监控 自带的监控+sysdig+scope+cAdvisor+prometheus

文章目录 一、Docker命令监控二、Sysdig2.1介绍2.2 基本操作2.2.1 切换视图2.2.2 查看标签含义2.2.3 排序2.2.4 查看内部进程2.2.5 查找2.2.6 暂停2.2.7 上一级2.2.8 退出 三、Weave Scope3.1介绍3.2基本操作3.2.1 显示容器3.2.2 选择容器3.2.3 按照CPU使用情况排序3.2.4 控制容…

手动开发 简单的 Spring 基于 XML 配置的程序

目录 手动开发- 简单的 Spring 基于 XML 配置的程序 需求说明 思路分析 WyxApplicationContextTest xml配置 注意 手动开发- 简单的 Spring 基于 XML 配置的程序 需求说明 1. 自己写一个简单的 Spring 容器, 通过读取 beans.xml&#xff0c;获取第 1 个 JavaBean: Mon…

【建议收藏】Pandas(一)——初见Series

文章目录 &#x1f4da;引言&#x1f4d6;库的安装以及一些说明&#x1f4d1;库的安装&#x1f4d1;一些说明 &#x1f4d6;Series&#x1f4d1;创建一个Series&#x1f516;从列表创建Series&#x1f516;从字典创建Series&#x1f516;标量创建Series &#x1f4d1;Series的特…

SpringSecurity认证原理和自定义认证

认证原理和自定义认证 认证配置表单认证注销登录前后端分离认证添加验证码 自定义认证 自定义资源权限规则 /index 公共资源/hello … 受保护资源 权限管理 在项目中添加如下配置就可以实现对资源权限规则设定: Configuration public class WebSecurityConfigurer extend…

node笔记_http服务搭建(渲染html、json)

文章目录 ⭐前言⭐初始化项目调整npm 的script运行入口搭建hello world的http服务npm run dev执行主函数的http服务 ⭐http返回类型html模板文件返回安装express渲染html的字符串 渲染html文件 sendFile渲染json返回数据类型 res.json ⭐结束 ⭐前言 大家好&#xff0c;我是ym…

CTF权威指南 笔记 -第二章二进制文件- 2.2 -ELF文件格式

目录 ELF的文件类型 ELF文件的结构 ELF文件头 节头表 代码节 数据节和只读数据节 bss节 字符串表 符号表 重定位 可执行文件的装载 常见的段 ELF就是可执行可连接格式 为linux运行文件格式 ELF的文件类型 我们使用复杂的例子进行演示 #include<stdio.h>int gl…

成功解决长时间挂起虚拟机后再次打开无法连接网络,并提示网络激活失败(亲测有效)

成功解决长时间挂起虚拟机后再次打开无法连接网络&#xff0c;并提示网络激活失败&#xff08;亲测有效&#xff01;&#xff09; 之前做区块链的一个虚拟机很久没打开&#xff0c;一直处于挂起状态&#xff0c;一直提示网络连接激活失败。试了很多种方法没解决&#xff0c;更…

人力资源管理系统有哪些推荐?

人力资源管理系统是现代企业管理中必不可少的工具&#xff0c;它可以帮助企业高效地管理人员的入职、离职、考勤、绩效、薪酬等方面的信息。 然而&#xff0c;市场上的HRM系统琳琅满目&#xff0c;选择一款合适的系统并不容易。 今天就来给大家介绍六款好用的人力资源管理系统…