目录
- 1 案例架构
- 2 业务数据
- 2.1 客户信息表
- 2.2 客户意向表
- 2.3 客户线索表
- 2.4 线索申诉表
- 2.5 客户访问咨询记录表
- 3 Flink CDC 实时数据采集
- 3.1 开启MySQL binlog
- 3.2 环境准备
- 3.3 实时采集数据
- 3.3.1 客户信息表
- 3.3.2 客户意向表
- 3.3.3 客户线索表
- 3.3.4 客户申诉表
- 3.3.5 客户访问咨询记录表
- 4 Presto 即席分析
- 4.1 Presto 是什么
- 4.2 Presto 安装部署
- 4.3 Hive 创建表
- 4.3.1 创建数据库
- 4.3.2 客户信息表
- 4.3.3 客户意向表
- 4.3.4 客户线索表
- 4.3.5 客户申诉表
- 4.3.6 客户访问咨询记录表
- 4.4 离线指标分析
- 4.4.1 每日报名量
- 4.4.2 每日访问量
- 4.4.3 每日意向数
- 4.4.4 每日线索量
- 5 Flink SQL 流式分析
- 5.1 业务需求
- 5.2 创建MySQL表
- 5.3 实时指标分析
- 5.3.1 今日访问量
- 5.3.2 今日咨询量
- 5.3.3 今日意向数
- 5.3.4 今日报名人数
- 5.3.5 今日有效线索量
- 6 FineBI 报表可视化
1 案例架构
本案例基于Flink SQL 与Hudi整合,将MySQL数据库业务数据,实时采集存储到Hudi表中,使用Presto和Flink SQL分别进行离线查询分析和流式查询数据,最后报表存储到MySQL数据库,使用FineBI整合进行可视化展示。
1、MySQL数据库:
教育客户业务数据存储及离线实时分析报表结果存储,对接可视化FineBI工具展示。
2、Flink SQL 引擎
使用Flink SQL中CDC实时采集MySQL数据库表数据到Hudi表,此外基于Flink SQL Connector整合Hudi与MySQL,数据存储和查询。
3、Apache Hudi:数据湖框架
教育业务数据,最终存储到Hudi表(底层存储:HDFS分布式文件系统),统一管理数据文件,后期与Spark和Hive集成,进行业务指标分析。
4、Presto 分析引擎
一个Facebook开源的分布式SQL查询引擎,适用于交互式分析查询,数据量支持GB到PB字节。
本案例中直接从Hudi表加载数据,其中依赖Hive MetaStore管理元数据。其中Presto可以集成多数据源,方便数据交互处理。
2 业务数据
本次案例实战业务数据,来源于实际的客户Customer产生业务数据(咨询、访问、报名、浏览等),存储在MySQL数据库:oldlu_nev,使用业务表:
启动MySQL数据库,命令行方式登录,先创建数据库,再创建表,最后导入数据。
[root@node1 ~]# mysql -uroot -p123456
CREATE DATABASE IF NOT EXISTS oldlu_nev;
USE oldlu_nev;
2.1 客户信息表
客户信息表:customer,创建表DDL语句:
CREATE TABLE IF NOT EXISTS oldlu_nev.customer (
`id` int(11) NOT NULL AUTO_INCREMENT,
`customer_relationship_id` int(11) DEFAULT NULL COMMENT '当前意向id',
`create_date_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_date_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '最后更新时间',
`deleted` bit(1) NOT NULL DEFAULT b'0' COMMENT '是否被删除(禁用)',
`name` varchar(128) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '姓名',
`idcard` varchar(24) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT '' COMMENT '身份证号',
`birth_year` int(5) DEFAULT NULL COMMENT '出生年份',
`gender` varchar(8) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT 'MAN' COMMENT '性别',
`phone` varchar(24) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL DEFAULT '' COMMENT '手机号',
`wechat` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT '' COMMENT '微信',
`qq` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT '' COMMENT 'qq号',
`email` varchar(56) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT '' COMMENT '邮箱',
`area` varchar(128) COLLATE utf8mb4_unicode_ci DEFAULT '' COMMENT '所在区域',
`leave_school_date` date DEFAULT NULL COMMENT '离校时间',
`graduation_date` date DEFAULT NULL COMMENT '毕业时间',
`bxg_student_id` varchar(64) COLLATE utf8mb4_unicode_ci DEFAULT NULL COMMENT '博学谷学员ID,可能未关联到,不存在',
`creator` int(11) DEFAULT NULL COMMENT '创建人ID',
`origin_type` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL COMMENT '数据来源',
`origin_channel` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL COMMENT '来源渠道',
`tenant` int(11) NOT NULL DEFAULT '0',
`md_id` int(11) DEFAULT '0' COMMENT '中台id',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
预先导入客户信息数据至表中,使用命令:source
mysql> source /root/1-customer.sql ;
2.2 客户意向表
客户意向表:customer_relationship,创建表DDL语句:
CREATE TABLE IF NOT EXISTS oldlu_nev.customer_relationship(
`id` int(11) NOT NULL AUTO_INCREMENT,
`create_date_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
`update_date_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '最后更新时间',
`deleted` bit(1) NOT NULL DEFAULT b'0' COMMENT '是否被删除(禁用)',
`customer_id` int(11) NOT NULL DEFAULT '0' COMMENT '所属客户id',
`first_id` int(11) DEFAULT NULL COMMENT '第一条客户关系id',
`belonger` int(11) DEFAULT NULL COMMENT '归属人',
`belonger_name` varchar(10) DEFAULT NULL COMMENT '归属人姓名',
`initial_belonger` int(11) DEFAULT NULL COMMENT '初始归属人',
`distribution_handler` int(11) DEFAULT NULL COMMENT '分配处理人',
`business_scrm_department_id` int(11) DEFAULT '0' COMMENT '归属部门',
`last_visit_time` datetime DEFAULT NULL COMMENT '最后回访时间',
`next_visit_time` datetime DEFAULT NULL COMMENT '下次回访时间',
`origin_type` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL COMMENT '数据来源',
`oldlu_school_id` int(11) DEFAULT NULL COMMENT '校区Id',
`oldlu_subject_id` int(11) DEFAULT NULL COMMENT '学科Id',
`intention_study_type` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL COMMENT '意向学习方式',
`anticipat_signup_date` date DEFAULT NULL COMMENT '预计报名时间',
`level` varchar(8) DEFAULT NULL COMMENT '客户级别',
`creator` int(11) DEFAULT NULL COMMENT '创建人',
`current_creator` int(11) DEFAULT NULL COMMENT '当前创建人:初始==创建人,当在公海拉回时为 拉回人',
`creator_name` varchar(32) DEFAULT '' COMMENT '创建者姓名',
`origin_channel` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL COMMENT '来源渠道',
`comment` varchar(255) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT '' COMMENT '备注',
`first_customer_clue_id` int(11) DEFAULT '0' COMMENT '第一条线索id',
`last_customer_clue_id` int(11) DEFAULT '0' COMMENT '最后一条线索id',
`process_state` varchar(32) DEFAULT NULL COMMENT '处理状态',
`process_time` datetime DEFAULT NULL COMMENT '处理状态变动时间',
`payment_state` varchar(32) DEFAULT NULL COMMENT '支付状态',
`payment_time` datetime DEFAULT NULL COMMENT '支付状态变动时间',
`signup_state` varchar(32) CHARACTER SET utf8 COLLATE utf8_bin DEFAULT NULL COMMENT '报名状态',
`signup_time` datetime DEFAULT NULL COMMENT '报名时间',
`notice_state` varchar(32) DEFAULT NULL COMMENT '通知状态',
`notice_time` datetime DEFAULT NULL COMMENT '通知状态变动时间',
`lock_state` bit(1) DEFAULT b'0' COMMENT '锁定状态',
`lock_time` datetime DEFAULT NULL COMMENT '锁定状态修改时间',
`oldlu_clazz_id` int(11) DEFAULT NULL COMMENT '所属ems班级id',
`oldlu_clazz_time` datetime DEFAULT NULL COMMENT '报班时间',
`payment_url` varchar(1024) DEFAULT '' COMMENT '付款链接',
`payment_url_time` datetime DEFAULT NULL COMMENT '支付链接生成时间',
`ems_student_id` int(11) DEFAULT NULL COMMENT 'ems的学生id',
`delete_reason` varchar(64) DEFAULT NULL COMMENT '删除原因',
`deleter` int(11) DEFAULT NULL COMMENT '删除人',
`deleter_name` varchar(32) DEFAULT NULL COMMENT '删除人姓名',
`delete_time` datetime DEFAULT NULL COMMENT '删除时间',
`course_id` int(11) DEFAULT NULL COMMENT '课程ID',
`course_name` varchar(64) DEFAULT NULL COMMENT '课程名称',
`delete_comment` varchar(255) DEFAULT '' COMMENT '删除原因说明',
`close_state` varchar(32) DEFAULT NULL COMMENT '关闭装填',
`close_time` datetime DEFAULT NULL COMMENT '关闭状态变动时间',
`appeal_id` int(11) DEFAULT NULL COMMENT '申诉id',
`tenant` int(11) NOT NULL DEFAULT '0' COMMENT '租户',
`total_fee` decimal(19,0) DEFAULT NULL COMMENT '报名费总金额',
`belonged` int(11) DEFAULT NULL COMMENT '小周期归属人',
`belonged_time` datetime DEFAULT NULL COMMENT '归属时间',
`belonger_time` datetime DEFAULT NULL COMMENT '归属时间',
`transfer` int(11) DEFAULT NULL COMMENT '转移人',
`transfer_time` datetime DEFAULT NULL COMMENT '转移时间',
`follow_type` int(4) DEFAULT '0' COMMENT '分配类型,0-自动分配,1-手动分配,2-自动转移,3-手动单个转移,4-手动批量转移,5-公海领取',
`transfer_bxg_oa_account` varchar(64) DEFAULT NULL COMMENT '转移到博学谷归属人OA账号',
`transfer_bxg_belonger_name` varchar(64) DEFAULT NULL COMMENT '转移到博学谷归属人OA姓名',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
预先导入客户意向数据至表中,使用命令:source
mysql> source /root/2-customer_relationship.sql ;
2.3 客户线索表
客户线索表:customer_clue,创建表DDL语句:
CREATE TABLE IF NOT EXISTS oldlu_nev.customer_clue(
`id` int(11) NOT NULL AUTO_INCREMENT,
`create_date_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
`update_date_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '最后更新时间',
`deleted` bit(1) NOT NULL DEFAULT b'0' COMMENT '是否被删除(禁用)',
`customer_id` int(11) DEFAULT NULL COMMENT '客户id',
`customer_relationship_id` int(11) DEFAULT NULL COMMENT '客户关系id',
`session_id` varchar(48) COLLATE utf8_bin DEFAULT '' COMMENT '七陌会话id',
`sid` varchar(48) COLLATE utf8_bin DEFAULT '' COMMENT '访客id',
`status` varchar(16) COLLATE utf8_bin DEFAULT '' COMMENT '状态(undeal待领取 deal 已领取 finish 已关闭 changePeer 已流转)',
`user` varchar(16) COLLATE utf8_bin DEFAULT '' COMMENT '所属坐席',
`create_time` datetime DEFAULT NULL COMMENT '七陌创建时间',
`platform` varchar(16) COLLATE utf8_bin DEFAULT '' COMMENT '平台来源 (pc-网站咨询|wap-wap咨询|sdk-app咨询|weixin-微信咨询)',
`s_name` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT '用户名称',
`seo_source` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '搜索来源',
`seo_keywords` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '关键字',
`ip` varchar(48) COLLATE utf8_bin DEFAULT '' COMMENT 'IP地址',
`referrer` text COLLATE utf8_bin COMMENT '上级来源页面',
`from_url` text COLLATE utf8_bin COMMENT '会话来源页面',
`landing_page_url` text COLLATE utf8_bin COMMENT '访客着陆页面',
`url_title` varchar(1024) COLLATE utf8_bin DEFAULT '' COMMENT '咨询页面title',
`to_peer` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '所属技能组',
`manual_time` datetime DEFAULT NULL COMMENT '人工开始时间',
`begin_time` datetime DEFAULT NULL COMMENT '坐席领取时间 ',
`reply_msg_count` int(11) DEFAULT '0' COMMENT '客服回复消息数',
`total_msg_count` int(11) DEFAULT '0' COMMENT '消息总数',
`msg_count` int(11) DEFAULT '0' COMMENT '客户发送消息数',
`comment` varchar(1024) COLLATE utf8_bin DEFAULT '' COMMENT '备注',
`finish_reason` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '结束类型',
`finish_user` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT '结束坐席',
`end_time` datetime DEFAULT NULL COMMENT '会话结束时间',
`platform_description` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '客户平台信息',
`browser_name` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '浏览器名称',
`os_info` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '系统名称',
`area` varchar(255) COLLATE utf8_bin DEFAULT NULL COMMENT '区域',
`country` varchar(16) COLLATE utf8_bin DEFAULT '' COMMENT '所在国家',
`province` varchar(16) COLLATE utf8_bin DEFAULT '' COMMENT '省',
`city` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '城市',
`creator` int(11) DEFAULT '0' COMMENT '创建人',
`name` varchar(64) COLLATE utf8_bin DEFAULT '' COMMENT '客户姓名',
`idcard` varchar(24) COLLATE utf8_bin DEFAULT '' COMMENT '身份证号',
`phone` varchar(24) COLLATE utf8_bin DEFAULT '' COMMENT '手机号',
`oldlu_school_id` int(11) DEFAULT NULL COMMENT '校区Id',
`oldlu_school` varchar(128) COLLATE utf8_bin DEFAULT '' COMMENT '校区',
`oldlu_subject_id` int(11) DEFAULT NULL COMMENT '学科Id',
`oldlu_subject` varchar(128) COLLATE utf8_bin DEFAULT '' COMMENT '学科',
`wechat` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT '微信',
`qq` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT 'qq号',
`email` varchar(56) COLLATE utf8_bin DEFAULT '' COMMENT '邮箱',
`gender` varchar(8) COLLATE utf8_bin DEFAULT 'MAN' COMMENT '性别',
`level` varchar(8) COLLATE utf8_bin DEFAULT NULL COMMENT '客户级别',
`origin_type` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT '数据来源渠道',
`information_way` varchar(32) COLLATE utf8_bin DEFAULT NULL COMMENT '资讯方式',
`working_years` date DEFAULT NULL COMMENT '开始工作时间',
`technical_directions` varchar(255) COLLATE utf8_bin DEFAULT '' COMMENT '技术方向',
`customer_state` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT '当前客户状态',
`valid` bit(1) DEFAULT b'0' COMMENT '该线索是否是网资有效线索',
`anticipat_signup_date` date DEFAULT NULL COMMENT '预计报名时间',
`clue_state` varchar(32) COLLATE utf8_bin DEFAULT 'NOT_SUBMIT' COMMENT '线索状态',
`scrm_department_id` int(11) DEFAULT NULL COMMENT 'SCRM内部部门id',
`superior_url` text COLLATE utf8_bin COMMENT '诸葛获取上级页面URL',
`superior_source` varchar(1024) COLLATE utf8_bin DEFAULT NULL COMMENT '诸葛获取上级页面URL标题',
`landing_url` text COLLATE utf8_bin COMMENT '诸葛获取着陆页面URL',
`landing_source` varchar(1024) COLLATE utf8_bin DEFAULT NULL COMMENT '诸葛获取着陆页面URL来源',
`info_url` text COLLATE utf8_bin COMMENT '诸葛获取留咨页URL',
`info_source` varchar(255) COLLATE utf8_bin DEFAULT NULL COMMENT '诸葛获取留咨页URL标题',
`origin_channel` varchar(32) COLLATE utf8_bin DEFAULT '' COMMENT '投放渠道',
`course_id` int(32) DEFAULT NULL,
`course_name` varchar(255) COLLATE utf8_bin DEFAULT NULL,
`zhuge_session_id` varchar(500) COLLATE utf8_bin DEFAULT NULL,
`is_repeat` int(4) NOT NULL DEFAULT '0' COMMENT '是否重复线索(手机号维度) 0:正常 1:重复',
`tenant` int(11) NOT NULL DEFAULT '0' COMMENT '租户id',
`activity_id` varchar(16) COLLATE utf8_bin DEFAULT NULL COMMENT '活动id',
`activity_name` varchar(64) COLLATE utf8_bin DEFAULT NULL COMMENT '活动名称',
`follow_type` int(4) DEFAULT '0' COMMENT '分配类型,0-自动分配,1-手动分配,2-自动转移,3-手动单个转移,4-手动批量转移,5-公海领取',
`shunt_mode_id` int(11) DEFAULT NULL COMMENT '匹配到的技能组id',
`shunt_employee_group_id` int(11) DEFAULT NULL COMMENT '所属分流员工组',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_bin;
预先导入客户线索表数据至表中,使用命令:source
mysql> source /root/3-customer_clue.sql;
2.4 线索申诉表
线索申诉表:customer_appeal,创建表DDL语句:
CREATE TABLE IF NOT EXISTS oldlu_nev.customer_appeal
(
id int auto_increment primary key COMMENT '主键',
customer_relationship_first_id int not NULL COMMENT '第一条客户关系id',
employee_id int NULL COMMENT '申诉人',
employee_name varchar(64) NULL COMMENT '申诉人姓名',
employee_department_id int NULL COMMENT '申诉人部门',
employee_tdepart_id int NULL COMMENT '申诉人所属部门',
appeal_status int(1) not NULL COMMENT '申诉状态,0:待稽核 1:无效 2:有效',
audit_id int NULL COMMENT '稽核人id',
audit_name varchar(255) NULL COMMENT '稽核人姓名',
audit_department_id int NULL COMMENT '稽核人所在部门',
audit_department_name varchar(255) NULL COMMENT '稽核人部门名称',
audit_date_time datetime NULL COMMENT '稽核时间',
create_date_time datetime DEFAULT CURRENT_TIMESTAMP NULL COMMENT '创建时间(申诉时间)',
update_date_time timestamp DEFAULT CURRENT_TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
deleted bit DEFAULT b'0' not NULL COMMENT '删除标志位',
tenant int DEFAULT 0 not NULL
)ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_unicode_ci;
预先导入线索申诉数据至表中,使用命令:source
mysql> source /root/4-customer_appeal.sql ;
2.5 客户访问咨询记录表
客户访问咨询记录表:web_chat_ems,创建表DDL语句:
create table IF NOT EXISTS oldlu_nev.web_chat_ems(
id int auto_increment primary key comment '主键' ,
create_date_time timestamp null comment '数据创建时间',
session_id varchar(48) default '' not null comment '七陌sessionId',
sid varchar(48) collate utf8_bin default '' not null comment '访客id',
create_time datetime null comment '会话创建时间',
seo_source varchar(255) collate utf8_bin default '' null comment '搜索来源',
seo_keywords varchar(512) collate utf8_bin default '' null comment '关键字',
ip varchar(48) collate utf8_bin default '' null comment 'IP地址',
area varchar(255) collate utf8_bin default '' null comment '地域',
country varchar(16) collate utf8_bin default '' null comment '所在国家',
province varchar(16) collate utf8_bin default '' null comment '省',
city varchar(255) collate utf8_bin default '' null comment '城市',
origin_channel varchar(32) collate utf8_bin default '' null comment '投放渠道',
user varchar(255) collate utf8_bin default '' null comment '所属坐席',
manual_time datetime null comment '人工开始时间',
begin_time datetime null comment '坐席领取时间 ',
end_time datetime null comment '会话结束时间',
last_customer_msg_time_stamp datetime null comment '客户最后一条消息的时间',
last_agent_msg_time_stamp datetime null comment '坐席最后一下回复的时间',
reply_msg_count int(12) default 0 null comment '客服回复消息数',
msg_count int(12) default 0 null comment '客户发送消息数',
browser_name varchar(255) collate utf8_bin default '' null comment '浏览器名称',
os_info varchar(255) collate utf8_bin default '' null comment '系统名称'
);
预先导入访问咨询记录至表中,使用命令:source
mysql> source /root/5-web_chat_ems.sql;
3 Flink CDC 实时数据采集
Flink 1.11 引入了 Flink SQL CDC,方便将RDBMS表数据,实时采集到存储系统,比如Hudi表等,其中MySQL CDC连接器允许从MySQL数据库读取快照数据和增量数据。
3.1 开启MySQL binlog
MySQL CDC,需要首先开启MySQL数据库binlog日志,再重启MySQL数据库服务。
第一步、开启MySQL binlog日志
[root@node1 ~]# vim /etc/my.cnf
在[mysqld]下面添加内容:
server-id=2
log-bin=mysql-bin
binlog_format=row
expire_logs_days=15
binlog_row_image=full
第二步、重启MySQL Server
service mysqld restart
登录MySQL Client命令行,查看是否生效。
第三步、下载Flink CDC MySQL Jar包
由于使用Flink 1.12.2版本,目前支持Flink CDC 版本:1.3.0,添加maven 依赖:
<!-- https://mvnrepository.com/artifact/com.alibaba.ververica/flink-connector-mysql-cdc -->
<dependency>
<groupId>com.alibaba.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>1.3.0</version>
</dependency>
如果使用Flink SQL Client,需要将jar包放到 $FLINK_HOME/lib 目录中:
3.2 环境准备
实时数据采集,既可以编写Java程序,又可以直接运行DDL语句。
方式一:启动Flink SQL Client,执行编写DDL语句,Flink Job提交到Standalone集群
– 启动HDFS服务
hadoop-daemon.sh start namenode
hadoop-daemon.sh start datanode
– 启动Flink Standalone集群
export HADOOP_CLASSPATH=
/export/server/hadoop/bin/hadoop classpath
/export/server/flink/bin/start-cluster.sh
– 启动SQL Client
/export/server/flink/bin/sql-client.sh embedded
-j /export/server/flink/lib/hudi-flink-bundle_2.12-0.9.0.jar shell
– 设置属性
set execution.result-mode=tableau; set
execution.checkpointing.interval=3sec;
SET execution.runtime-mode =streaming;
方式二:使用IDEA创建Maven工程,添加相关依赖,编写程序,执行DDL语句。
依赖pom.xml添内容如下:
<repositories>
<repository>
<id>nexus-aliyun</id>
<name>Nexus aliyun</name>
<url>http://maven.aliyun.com/nexus/content/groups/public</url>
</repository>
<repository>
<id>central_maven</id>
<name>central maven</name>
<url>https://repo1.maven.org/maven2</url>
</repository>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
<repository>
<id>apache.snapshots</id>
<name>Apache Development Snapshot Repository</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>${java.version}</maven.compiler.source>
<maven.compiler.target>${java.version}</maven.compiler.target>
<java.version>1.8</java.version>
<scala.binary.version>2.12</scala.binary.version>
<flink.version>1.12.2</flink.version>
<hadoop.version>2.7.3</hadoop.version>
<mysql.version>8.0.16</mysql.version>
</properties>
<dependencies>
<!-- Flink Client -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<!-- Flink Table API & SQL -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-common</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-blink_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-json</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-flink-bundle_${scala.binary.version}</artifactId>
<version>0.9.0</version>
</dependency>
<dependency>
<groupId>com.alibaba.ververica</groupId>
<artifactId>flink-connector-mysql-cdc</artifactId>
<version>1.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-shaded-hadoop-2-uber</artifactId>
<version>2.7.5-10.0</version>
</dependency>
<!-- MySQL-->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.version}</version>
</dependency>
<!-- slf4j及log4j -->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.7</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
<scope>runtime</scope>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/java</sourceDirectory>
<testSourceDirectory>src/test/java</testSourceDirectory>
<plugins>
<!-- 编译插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.5.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<!--<encoding>${project.build.sourceEncoding}</encoding>-->
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
<!-- 打jar包插件(会包含所有依赖) -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
编写程序,实现数据实时采集同步,主要三个步骤:输入表InputTable、输出表outputTable,查询插入INSERT…SELECT语句,示意图如下:
本次案例,为了更加只管看到效果,启动Flink SQL Client客户端,编写DDL和DML语句,直接执行。
3.3 实时采集数据
基于Flink CDC 实时采集数据,需要创建输入Input和输出Output两张表,再编写INSERT…SELECT 插入查询语句。
接下来将MySQL数据库5张业务数据表数据,实时采集同步到Hudi表中(存储HDFS文件系统)。
3.3.1 客户信息表
同步客户信息表【customer】数据到Hudi表中,按照上述步骤编写DDL和DML语句并执行。
第一步、输入表InputTable
create table tbl_customer_mysql (
id STRING PRIMARY KEY NOT ENFORCED,
customer_relationship_id STRING,
create_date_time STRING,
update_date_time STRING,
deleted STRING,
name STRING,
idcard STRING,
birth_year STRING,
gender STRING,
phone STRING,
wechat STRING,
qq STRING,
email STRING,
area STRING,
leave_school_date STRING,
graduation_date STRING,
bxg_student_id STRING,
creator STRING,
origin_type STRING,
origin_channel STRING,
tenant STRING,
md_id STRING
)WITH (
'connector' = 'mysql-cdc',
'hostname' = 'node1.oldlu.cn',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'oldlu_nev',
'table-name' = 'customer'
);
第二步、输出表OutputTable
CREATE TABLE edu_customer_hudi(
id STRING PRIMARY KEY NOT ENFORCED,
customer_relationship_id STRING,
create_date_time STRING,
update_date_time STRING,
deleted STRING,
name STRING,
idcard STRING,
birth_year STRING,
gender STRING,
phone STRING,
wechat STRING,
qq STRING,
email STRING,
area STRING,
leave_school_date STRING,
graduation_date STRING,
bxg_student_id STRING,
creator STRING,
origin_type STRING,
origin_channel STRING,
tenant STRING,
md_id STRING,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/ehualu/hudi-warehouse/edu_customer_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'write.tasks'= '1',
'read.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true'
);
第三步、插入查询语句
insert into edu_customer_hudi
select *, CAST(CURRENT_DATE AS STRING) AS part from tbl_customer_mysql;
此时生成Flink job,提交到Standalone集群运行,首先将表中历史数据同步到Hudi表,再实时同步增量数据。
3.3.2 客户意向表
同步客户意向表【customer_relationship】数据到Hudi表中,按照上述步骤编写DDL和DML语句并执行。
第一步、输入表InputTable
create table tbl_customer_relationship_mysql (
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
first_id string,
belonger string,
belonger_name string,
initial_belonger string,
distribution_handler string,
business_scrm_department_id string,
last_visit_time string,
next_visit_time string,
origin_type string,
oldlu_school_id string,
oldlu_subject_id string,
intention_study_type string,
anticipat_signup_date string,
`level` string,
creator string,
current_creator string,
creator_name string,
origin_channel string,
`comment` string,
first_customer_clue_id string,
last_customer_clue_id string,
process_state string,
process_time string,
payment_state string,
payment_time string,
signup_state string,
signup_time string,
notice_state string,
notice_time string,
lock_state string,
lock_time string,
oldlu_clazz_id string,
oldlu_clazz_time string,
payment_url string,
payment_url_time string,
ems_student_id string,
delete_reason string,
deleter string,
deleter_name string,
delete_time string,
course_id string,
course_name string,
delete_comment string,
close_state string,
close_time string,
appeal_id string,
tenant string,
total_fee string,
belonged string,
belonged_time string,
belonger_time string,
transfer string,
transfer_time string,
follow_type string,
transfer_bxg_oa_account string,
transfer_bxg_belonger_name string
)WITH(
'connector' = 'mysql-cdc',
'hostname' = 'node1.oldlu.cn',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'oldlu_nev',
'table-name' = 'customer_relationship'
);
第二步、输出表OutputTable
create table edu_customer_relationship_hudi(
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
first_id string,
belonger string,
belonger_name string,
initial_belonger string,
distribution_handler string,
business_scrm_department_id string,
last_visit_time string,
next_visit_time string,
origin_type string,
oldlu_school_id string,
oldlu_subject_id string,
intention_study_type string,
anticipat_signup_date string,
`level` string,
creator string,
current_creator string,
creator_name string,
origin_channel string,
`comment` string,
first_customer_clue_id string,
last_customer_clue_id string,
process_state string,
process_time string,
payment_state string,
payment_time string,
signup_state string,
signup_time string,
notice_state string,
notice_time string,
lock_state string,
lock_time string,
oldlu_clazz_id string,
oldlu_clazz_time string,
payment_url string,
payment_url_time string,
ems_student_id string,
delete_reason string,
deleter string,
deleter_name string,
delete_time string,
course_id string,
course_name string,
delete_comment string,
close_state string,
close_time string,
appeal_id string,
tenant string,
total_fee string,
belonged string,
belonged_time string,
belonger_time string,
transfer string,
transfer_time string,
follow_type string,
transfer_bxg_oa_account string,
transfer_bxg_belonger_name string,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/ehualu/hudi-warehouse/edu_customer_relationship_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true'
);
第三步、插入查询语句
insert into edu_customer_relationship_hudi
select *, CAST(CURRENT_DATE AS STRING) AS part from tbl_customer_relationship_mysql;
查看HDFS文件系统,同步全量数据存储Hudi目录:
3.3.3 客户线索表
同步客户线索表【customer_clue】数据到Hudi表,按照上述步骤编写DDL和DML语句并执行。
第一步、输入表InputTable
create table tbl_customer_clue_mysql (
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
customer_relationship_id string,
session_id string,
sid string,
status string,
`user` string,
create_time string,
platform string,
s_name string,
seo_source string,
seo_keywords string,
ip string,
referrer string,
from_url string,
landing_page_url string,
url_title string,
to_peer string,
manual_time string,
begin_time string,
reply_msg_count string,
total_msg_count string,
msg_count string,
`comment` string,
finish_reason string,
finish_user string,
end_time string,
platform_description string,
browser_name string,
os_info string,
area string,
country string,
province string,
city string,
creator string,
name string,
idcard string,
phone string,
oldlu_school_id string,
oldlu_school string,
oldlu_subject_id string,
oldlu_subject string,
wechat string,
qq string,
email string,
gender string,
`level` string,
origin_type string,
information_way string,
working_years string,
technical_directions string,
customer_state string,
valid string,
anticipat_signup_date string,
clue_state string,
scrm_department_id string,
superior_url string,
superior_source string,
landing_url string,
landing_source string,
info_url string,
info_source string,
origin_channel string,
course_id string,
course_name string,
zhuge_session_id string,
is_repeat string,
tenant string,
activity_id string,
activity_name string,
follow_type string,
shunt_mode_id string,
shunt_employee_group_id string
)WITH(
'connector' = 'mysql-cdc',
'hostname' = 'node1.oldlu.cn',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'oldlu_nev',
'table-name' = 'customer_clue'
);
第二步、输出表OutputTable
create table edu_customer_clue_hudi (
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
customer_relationship_id string,
session_id string,
sid string,
status string,
`user` string,
create_time string,
platform string,
s_name string,
seo_source string,
seo_keywords string,
ip string,
referrer string,
from_url string,
landing_page_url string,
url_title string,
to_peer string,
manual_time string,
begin_time string,
reply_msg_count string,
total_msg_count string,
msg_count string,
`comment` string,
finish_reason string,
finish_user string,
end_time string,
platform_description string,
browser_name string,
os_info string,
area string,
country string,
province string,
city string,
creator string,
name string,
idcard string,
phone string,
oldlu_school_id string,
oldlu_school string,
oldlu_subject_id string,
oldlu_subject string,
wechat string,
qq string,
email string,
gender string,
`level` string,
origin_type string,
information_way string,
working_years string,
technical_directions string,
customer_state string,
valid string,
anticipat_signup_date string,
clue_state string,
scrm_department_id string,
superior_url string,
superior_source string,
landing_url string,
landing_source string,
info_url string,
info_source string,
origin_channel string,
course_id string,
course_name string,
zhuge_session_id string,
is_repeat string,
tenant string,
activity_id string,
activity_name string,
follow_type string,
shunt_mode_id string,
shunt_employee_group_id string,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/ehualu/hudi-warehouse/edu_customer_clue_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true'
);
第三步、插入查询语句
insert into edu_customer_clue_hudi
select *, CAST(CURRENT_DATE AS STRING) AS part from tbl_customer_clue_mysql;
查看HDFS文件系统,同步全量数据存储Hudi目录:
3.3.4 客户申诉表
同步客户申诉表【customer_appeal】数据到Hudi表,按照上述步骤编写DDL和DML语句执行。
第一步、输入表InputTable
create table tbl_customer_appeal_mysql (
id string PRIMARY KEY NOT ENFORCED,
customer_relationship_first_id string,
employee_id string,
employee_name string,
employee_department_id string,
employee_tdepart_id string,
appeal_status string,
audit_id string,
audit_name string,
audit_department_id string,
audit_department_name string,
audit_date_time string,
create_date_time string,
update_date_time string,
deleted string,
tenant string
)WITH (
'connector' = 'mysql-cdc',
'hostname' = 'node1.oldlu.cn',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'oldlu_nev',
'table-name' = 'customer_appeal'
);
第二步、输出表OutputTable
create table edu_customer_appeal_hudi (
id string PRIMARY KEY NOT ENFORCED,
customer_relationship_first_id STRING,
employee_id STRING,
employee_name STRING,
employee_department_id STRING,
employee_tdepart_id STRING,
appeal_status STRING,
audit_id STRING,
audit_name STRING,
audit_department_id STRING,
audit_department_name STRING,
audit_date_time STRING,
create_date_time STRING,
update_date_time STRING,
deleted STRING,
tenant STRING,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/ehualu/hudi-warehouse/edu_customer_appeal_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true'
);
第三步、插入查询语句
insert into edu_customer_appeal_hudi
select *, CAST(CURRENT_DATE AS STRING) AS part from tbl_customer_appeal_mysql;
查看HDFS文件系统,同步全量数据存储Hudi目录:
3.3.5 客户访问咨询记录表
同步客服访问咨询记录表【web_chat_ems】数据到Hudi表中,按照上述步骤编写DDL和DML语句并执行。
第一步、输入表InputTable
create table tbl_web_chat_ems_mysql (
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
session_id string,
sid string,
create_time string,
seo_source string,
seo_keywords string,
ip string,
area string,
country string,
province string,
city string,
origin_channel string,
`user` string,
manual_time string,
begin_time string,
end_time string,
last_customer_msg_time_stamp string,
last_agent_msg_time_stamp string,
reply_msg_count string,
msg_count string,
browser_name string,
os_info string
)WITH(
'connector' = 'mysql-cdc',
'hostname' = 'node1.oldlu.cn',
'port' = '3306',
'username' = 'root',
'password' = '123456',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode' = 'initial',
'database-name' = 'oldlu_nev',
'table-name' = 'web_chat_ems'
);
第二步、输出表OutputTable
create table edu_web_chat_ems_hudi (
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
session_id string,
sid string,
create_time string,
seo_source string,
seo_keywords string,
ip string,
area string,
country string,
province string,
city string,
origin_channel string,
`user` string,
manual_time string,
begin_time string,
end_time string,
last_customer_msg_time_stamp string,
last_agent_msg_time_stamp string,
reply_msg_count string,
msg_count string,
browser_name string,
os_info string,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/ehualu/hudi-warehouse/edu_web_chat_ems_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'write.tasks'= '1',
'write.rate.limit'= '2000',
'compaction.tasks'= '1',
'compaction.async.enabled'= 'true',
'compaction.trigger.strategy'= 'num_commits',
'compaction.delta_commits'= '1',
'changelog.enabled'= 'true'
);
第三步、插入查询语句
insert into edu_web_chat_ems_hudi
select *, CAST(CURRENT_DATE AS STRING) AS part from tbl_web_chat_ems_mysql;
查看HDFS文件系统,同步全量数据存储Hudi目录:
采集同步到Hudi表中,此时5个Flink job依然在Standalone集群上运行,如果各个表中有业务数据产生,同样实时获取,存储到Hudi表中
4 Presto 即席分析
使用Presto 分析Hudi表数据,最终将结果直接存储到MySQL数据库表中,示意图如下。
第一、Hive 中创建表,关联Hudi表
第二、Presto集成Hive,加载Hive表数据
第三、Presto集成MySQL,读取或者保存数据
4.1 Presto 是什么
Presto是一款Facebook开源的MPP架构的OLAP查询引擎,可针对不同数据源执行大容量数据集的一款分布式SQL执行引擎。适用于交互式分析查询,数据量支持GB到PB字节。
1、清晰的架构,是一个能够独立运行的系统,不依赖于任何其他外部系统。例如调度,presto自身提供了对集群的监控,可以根据监控信息完成调度。
2、简单的数据结构,列式存储,逻辑行,大部分数据都可以轻易的转化成presto所需要的这种数据结构。
3、丰富的插件接口,完美对接外部存储系统,或者添加自定义的函数。
Presto采用典型的master-slave模型,由一个Coordinator节点,一个Discovery Server节点,多个Worker节点组成,Discovery Server通常内嵌于Coordinator节点中。
1、coordinator(master)负责meta管理,worker管理,query的解析和调度
2、worker则负责计算和读写
3、discovery server, 通常内嵌于coordinator节点中,也可以单独部署,用于节点心跳。在下文中,默认discovery和coordinator共享一台机器。
Presto 数据模型:采取三层表结构
1、catalog 对应某一类数据源,例如hive的数据,或mysql的数据
2、schema 对应mysql中的数据库
3、table 对应mysql中的表
4.2 Presto 安装部署
采用单节点部署安装Presto,服务器名称:node1.oldlu.cn,IP地址:192.168.88.100。
1、JDK8安装
java -version
2、上传解压Presto安装包
创建安装目录
mkdir -p /export/server
yum安装上传文件插件lrzsz
yum install -y lrzsz
上传安装包到node1的/export/server目录
presto-server-0.245.1.tar.gz
解压、重命名
tar -xzvf presto-server-0.245.1.tar.gz -C /export/server
ln -s presto-server-0.245.1 presto
创建配置文件存储目录
mkdir -p /export/server/presto/etc
3、配置presto
etc/config.properties
vim /export/server/presto/etc/config.properties
内容:
coordinator=true
node-scheduler.include-coordinator=true
http-server.http.port=8090
query.max-memory=6GB
query.max-memory-per-node=2GB
query.max-total-memory-per-node=2GB
discovery-server.enabled=true
discovery.uri=http://192.168.88.100:8090
etc/jvm.config
vim /export/server/presto/etc/jvm.config
内容:
-server
-Xmx3G
-XX:+UseG1GC
-XX:G1HeapRegionSize=32M
-XX:+UseGCOverheadLimit
-XX:+ExplicitGCInvokesConcurrent
-XX:+HeapDumpOnOutOfMemoryError
-XX:+ExitOnOutOfMemoryError
etc/node.properties
vim /export/server/presto/etc/node.properties
内容:
node.environment=hudipresto
node.id=presto-node1
node.data-dir=/export/server/presto/data
etc/catalog/hive.properties
mkdir -p /export/server/presto/etc/catalog
vim /export/server/presto/etc/catalog/hive.properties
内容:
connector.name=hive-hadoop2
hive.metastore.uri=thrift://192.168.88.100:9083
hive.parquet.use-column-names=true
hive.config.resources=/export/server/presto/etc/catalog/core-site.xml,/export/server/presto/etc/catalog/hdfs-site.xml
etc/catalog/mysql.properties
vim /export/server/presto/etc/catalog/mysql.properties
内容:
connector.name=mysql
connection-url=jdbc:mysql://node1.oldlu.cn:3306
connection-user=root
connection-password=123456
4、启动服务
进入Presto安装目录,执行 $PRESTO_HOME/bin中脚本
/export/server/presto/bin/launcher start
使用jps查看进程是否存在,进程名称:PrestoServer。
此外WEB UI界面:
http://192.168.88.100:8090/ui/
Presto CLI命令行客户端
下载CLI客户端
presto-cli-0.241-executable.jar
上传presto-cli-0.245.1-executable.jar到/export/server/presto/bin
mv presto-cli-0.245.1-executable.jar presto
chmod +x presto
CLI客户端启动
/export/server/presto/bin/presto --server 192.168.88.100:8090
4.3 Hive 创建表
为了让Presto分析Hudi表中数据,需要将Hudi表映射关联到Hive表中。接下来,再Hive中创建5张教育客户业务数据表,映射关联到Hudi表。
启动HDFS服务、HiveMetaStore和HiveServer服务,运行Beeline命令行:
-- 启动HDFS服务
hadoop-daemon.sh start namenode
hadoop-daemon.sh start datanode
-- Hive服务
/export/server/hive/bin/start-metastore.sh
/export/server/hive/bin/start-hiveserver2.sh
-- 启动Beeline客户端
/export/server/hive/bin/beeline -u jdbc:hive2://node1.oldlu.cn:10000 -n root -p 123456
设置Hive本地模式,方便测试使用:
-- 设置Hive本地模式
set hive.exec.mode.local.auto=true;
set hive.exec.mode.local.auto.tasks.max=10;
set hive.exec.mode.local.auto.inputbytes.max=50000000;
4.3.1 创建数据库
-- 创建数据库
CREATE DATABASE IF NOT EXISTS edu_hudi ;
-- 使用数据库
USE edu_hudi ;
4.3.2 客户信息表
编写DDL语句创建表:
CREATE EXTERNAL TABLE edu_hudi.tbl_customer(
id string,
customer_relationship_id string,
create_date_time string,
update_date_time string,
deleted string,
name string,
idcard string,
birth_year string,
gender string,
phone string,
wechat string,
qq string,
email string,
area string,
leave_school_date string,
graduation_date string,
bxg_student_id string,
creator string,
origin_type string,
origin_channel string,
tenant string,
md_id string
)PARTITIONED BY (day_str string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/ehualu/hudi-warehouse/edu_customer_hudi' ;
由于是分区表,所以添加分区:
ALTER TABLE edu_hudi.tbl_customer ADD IF NOT EXISTS PARTITION(day_str='2022-09-23')
location '/ehualu/hudi-warehouse/edu_customer_hudi/2022-09-23' ;
4.3.3 客户意向表
编写DDL语句创建表:
CREATE EXTERNAL TABLE edu_hudi.tbl_customer_relationship(
id string,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
first_id string,
belonger string,
belonger_name string,
initial_belonger string,
distribution_handler string,
business_scrm_department_id string,
last_visit_time string,
next_visit_time string,
origin_type string,
oldlu_school_id string,
oldlu_subject_id string,
intention_study_type string,
anticipat_signup_date string,
`level` string,
creator string,
current_creator string,
creator_name string,
origin_channel string,
`comment` string,
first_customer_clue_id string,
last_customer_clue_id string,
process_state string,
process_time string,
payment_state string,
payment_time string,
signup_state string,
signup_time string,
notice_state string,
notice_time string,
lock_state string,
lock_time string,
oldlu_clazz_id string,
oldlu_clazz_time string,
payment_url string,
payment_url_time string,
ems_student_id string,
delete_reason string,
deleter string,
deleter_name string,
delete_time string,
course_id string,
course_name string,
delete_comment string,
close_state string,
close_time string,
appeal_id string,
tenant string,
total_fee string,
belonged string,
belonged_time string,
belonger_time string,
transfer string,
transfer_time string,
follow_type string,
transfer_bxg_oa_account string,
transfer_bxg_belonger_name string
)PARTITIONED BY (day_str string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/ehualu/hudi-warehouse/edu_customer_relationship_hudi' ;
由于是分区表,所以添加分区:
ALTER TABLE edu_hudi.tbl_customer_relationship ADD IF NOT EXISTS PARTITION(day_str='2022-09-23')
location '/ehualu/hudi-warehouse/edu_customer_relationship_hudi/2022-09-23' ;
4.3.4 客户线索表
编写DDL语句创建表:
CREATE EXTERNAL TABLE edu_hudi.tbl_customer_clue(
id string,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
customer_relationship_id string,
session_id string,
sid string,
status string,
`user` string,
create_time string,
platform string,
s_name string,
seo_source string,
seo_keywords string,
ip string,
referrer string,
from_url string,
landing_page_url string,
url_title string,
to_peer string,
manual_time string,
begin_time string,
reply_msg_count string,
total_msg_count string,
msg_count string,
`comment` string,
finish_reason string,
finish_user string,
end_time string,
platform_description string,
browser_name string,
os_info string,
area string,
country string,
province string,
city string,
creator string,
name string,
idcard string,
phone string,
oldlu_school_id string,
oldlu_school string,
oldlu_subject_id string,
oldlu_subject string,
wechat string,
qq string,
email string,
gender string,
`level` string,
origin_type string,
information_way string,
working_years string,
technical_directions string,
customer_state string,
valid string,
anticipat_signup_date string,
clue_state string,
scrm_department_id string,
superior_url string,
superior_source string,
landing_url string,
landing_source string,
info_url string,
info_source string,
origin_channel string,
course_id string,
course_name string,
zhuge_session_id string,
is_repeat string,
tenant string,
activity_id string,
activity_name string,
follow_type string,
shunt_mode_id string,
shunt_employee_group_id string
)
PARTITIONED BY (day_str string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/ehualu/hudi-warehouse/edu_customer_clue_hudi' ;
由于是分区表,所以添加分区:
ALTER TABLE edu_hudi.tbl_customer_clue ADD IF NOT EXISTS PARTITION(day_str='2022-09-23')
location '/ehualu/hudi-warehouse/edu_customer_clue_hudi/2022-09-23' ;
4.3.5 客户申诉表
编写DDL语句创建表:
CREATE EXTERNAL TABLE edu_hudi.tbl_customer_appeal(
id string,
customer_relationship_first_id STRING,
employee_id STRING,
employee_name STRING,
employee_department_id STRING,
employee_tdepart_id STRING,
appeal_status STRING,
audit_id STRING,
audit_name STRING,
audit_department_id STRING,
audit_department_name STRING,
audit_date_time STRING,
create_date_time STRING,
update_date_time STRING,
deleted STRING,
tenant STRING
)
PARTITIONED BY (day_str string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/ehualu/hudi-warehouse/edu_customer_appeal_hudi' ;
由于是分区表,所以添加分区:
ALTER TABLE edu_hudi.tbl_customer_appeal ADD IF NOT EXISTS PARTITION(day_str='2022-09-23')
location '/ehualu/hudi-warehouse/edu_customer_appeal_hudi/2022-09-23' ;
4.3.6 客户访问咨询记录表
编写DDL语句创建表:
CREATE EXTERNAL TABLE edu_hudi.tbl_web_chat_ems (
id string,
create_date_time string,
session_id string,
sid string,
create_time string,
seo_source string,
seo_keywords string,
ip string,
area string,
country string,
province string,
city string,
origin_channel string,
`user` string,
manual_time string,
begin_time string,
end_time string,
last_customer_msg_time_stamp string,
last_agent_msg_time_stamp string,
reply_msg_count string,
msg_count string,
browser_name string,
os_info string
)
PARTITIONED BY (day_str string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT
'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION
'/ehualu/hudi-warehouse/edu_web_chat_ems_hudi' ;
由于是分区表,所以添加分区:
ALTER TABLE edu_hudi.tbl_web_chat_ems ADD IF NOT EXISTS PARTITION(day_str='2022-09-23')
location '/ehualu/hudi-warehouse/edu_web_chat_ems_hudi/2022-09-23' ;
4.4 离线指标分析
使用Presto分析Hudi表数据,需要将集成jar包:hudi-presto-bundle-0.9.0.jar,放入到Presto插件目录:/export/server/presto/plugin/hive-hadoop2中:
启动Presto Client 客户端命令行,查看Hive中创建数据库:
使用数据库:edu_hudi,查看有哪些表:
接下来,按照业务指标需求,使用Presto,分析Hudi表数据,将指标直接保存MySQL数据库。
首先在MySQL数据库中,创建database,专门存储分析指标表:
-- 创建数据库
CREATE DATABASE `oldlu_rpt` /*!40100 DEFAULT CHARACTER SET utf8 */;
4.4.1 每日报名量
对客户意向表数据统计分析:每日客户报名量,先创建MySQL表,再编写SQL,最后保存数据。
MySQL表:oldlu_rpt.stu_apply
CREATE TABLE IF NOT EXISTS `oldlu_rpt`.`stu_apply` (
`report_date` longtext,
`report_total` bigint(20) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标SQL语句:
WITH tmp AS (
SELECT
format_datetime(from_unixtime(cast(payment_time as bigint) / 1000),'yyyy-MM-dd')AS day_value, customer_id
FROM hive.edu_hudi.tbl_customer_relationship
WHERE
day_str = '2022-09-23' AND payment_time IS NOT NULL AND payment_state = 'PAID' AND deleted = 'false'
)
SELECT day_value, COUNT(customer_id) AS total FROM tmp GROUP BY day_value ;
分析结果保存MySQL表:
INSERT INTO mysql.oldlu_rpt.stu_apply (report_date, report_total)
SELECT day_value, total FROM (
SELECT day_value, COUNT(customer_id) AS total FROM (
SELECT
format_datetime(from_unixtime(cast(payment_time as bigint) / 1000), 'yyyy-MM-dd')AS day_value, customer_id
FROM hive.edu_hudi.tbl_customer_relationship
WHERE day_str = '2022-09-23' AND payment_time IS NOT NULL AND payment_state = 'PAID' AND deleted = 'false'
) GROUP BY day_value
) ;
查看数据库表中数据:
4.4.2 每日访问量
对客户意向表数据统计分析:每日客户访问量,先创建MySQL表,再编写SQL,最后保存数据。
MySQL表:oldlu_rpt.web_pv
CREATE TABLE IF NOT EXISTS `oldlu_rpt`.`web_pv` (
`report_date` longtext,
`report_total` bigint(20) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标SQL语句:
WITH tmp AS (
SELECT
id, format_datetime(from_unixtime(cast(create_time as bigint) / 1000), 'yyyy-MM-dd')AS day_value
FROM hive.edu_hudi.tbl_web_chat_ems
WHERE day_str = '2022-09-23'
)
SELECT day_value, COUNT(id) AS total FROM tmp GROUP BY day_value ;
分析结果保存MySQL表:
INSERT INTO mysql.oldlu_rpt.web_pv (report_date, report_total)
SELECT day_value, COUNT(id) AS total FROM (
SELECT
id, format_datetime(from_unixtime(cast(create_time as bigint) / 1000), 'yyyy-MM-dd') AS day_value
FROM hive.edu_hudi.tbl_web_chat_ems
WHERE day_str = '2022-09-23'
) GROUP BY day_value ;
查看数据库表中数据:
4.4.3 每日意向数
对客户意向表数据统计分析:每日客户意向数,先创建MySQL表,再编写SQL,最后保存数据。
MySQL表:oldlu_rpt.stu_intention
CREATE TABLE IF NOT EXISTS `oldlu_rpt`.`stu_intention` (
`report_date` longtext,
`report_total` bigint(20) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标SQL语句:
WITH tmp AS (
SELECT
id, format_datetime(from_unixtime(cast(create_date_time as bigint) / 1000), 'yyyy-MM-dd')AS day_value
FROM hive.edu_hudi.tbl_customer_relationship
WHERE day_str = '2022-09-23' AND create_date_time IS NOT NULL AND deleted = 'false'
)
SELECT day_value, COUNT(id) AS total FROM tmp GROUP BY day_value ;
分析结果保存MySQL表:
INSERT INTO mysql.oldlu_rpt.stu_intention (report_date, report_total)
SELECT day_value, COUNT(id) AS total FROM (
SELECT
id, format_datetime(from_unixtime(cast(create_date_time as bigint) / 1000), 'yyyy-MM-dd')AS day_value
FROM hive.edu_hudi.tbl_customer_relationship
WHERE day_str = '2022-09-23' AND create_date_time IS NOT NULL AND deleted = 'false'
) GROUP BY day_value ;
查看数据库表中数据:
4.4.4 每日线索量
对客户意向表数据统计分析:每日客户线索量,先创建MySQL表,再编写SQL,最后保存数据。
MySQL表:oldlu_rpt.stu_clue
CREATE TABLE IF NOT EXISTS `oldlu_rpt`.`stu_clue` (
`report_date` longtext,
`report_total` bigint(20) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标SQL语句:
WITH tmp AS (
SELECT
id, format_datetime(from_unixtime(cast(create_date_time as bigint) / 1000), 'yyyy-MM-dd')AS day_value
FROM hive.edu_hudi.tbl_customer_clue
WHERE day_str = '2022-09-23' AND clue_state IS NOT NULL AND deleted = 'false'
)
SELECT day_value, COUNT(id) AS total FROM tmp GROUP BY day_value ;
分析结果保存MySQL表:
INSERT INTO mysql.oldlu_rpt.stu_clue (report_date, report_total)
SELECT day_value, COUNT(id) AS total FROM (
SELECT
id, format_datetime(from_unixtime(cast(create_date_time as bigint) / 1000), 'yyyy-MM-dd')AS day_value
FROM hive.edu_hudi.tbl_customer_clue
WHERE day_str = '2022-09-23' AND clue_state IS NOT NULL AND deleted = 'false'
) GROUP BY day_value ;
查看数据库表中数据:
5 Flink SQL 流式分析
使用Flink SQL流式查询Hudi表今日实时数据,统计离线指标对应今日实时指标,最后使用FineBI实时大屏展示。
基于Flink SQL Connector与Hudi和MySQL集成,编写SQL流式查询分析,在SQL Clientk客户端命令行执行DDL语句和SELECT语句。
5.1 业务需求
总共有5个指标,涉及到3张业务表:客户访问记录表、客户线索表和客户意向表,其中每个指标实时数据存储到MySQL数据库中一张表。
每个实时指标统计,分为三个步骤:
第1步、创建输入表,流式加载Hudi表数据;
第2步、创建输出表,实时保存数据至MySQL表;
第3步、依据业务,编写SQL语句,查询输入表数据,并将结果插入输出表;
5.2 创建MySQL表
每个实时指标存储到MySQL数据库一张表,首先创建5个指标对应的5张表,名称不一样,字段一样,DDL语句如下:
指标1:今日访问量
CREATE TABLE `oldlu_rpt`.`realtime_web_pv` (
`report_date` varchar(255) NOT NULL,
`report_total` bigint(20) NOT NULL,
PRIMARY KEY (`report_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标2:今日咨询量
CREATE TABLE `oldlu_rpt`.`realtime_stu_consult` (
`report_date` varchar(255) NOT NULL,
`report_total` bigint(20) NOT NULL,
PRIMARY KEY (`report_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标3:今日意向数
CREATE TABLE `oldlu_rpt`.`realtime_stu_intention` (
`report_date` varchar(255) NOT NULL,
`report_total` bigint(20) NOT NULL,
PRIMARY KEY (`report_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标4:今日报名人数
CREATE TABLE `oldlu_rpt`.`realtime_stu_apply` (
`report_date` varchar(255) NOT NULL,
`report_total` bigint(20) NOT NULL,
PRIMARY KEY (`report_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
指标5:今日有效线索量
CREATE TABLE `oldlu_rpt`.`realtime_stu_clue` (
`report_date` varchar(255) NOT NULL,
`report_total` bigint(20) NOT NULL,
PRIMARY KEY (`report_date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
5.3 实时指标分析
1、今日访问量和今日咨询量,流式加载表:edu_web_chat_ems_hudi 数据
今日意向数和今日报名人数,流式加载表:edu_customer_relationship_hudi 数据
3、今日有效线索量,流式加载表:edu_customer_clue_hudi 数据
启动HDFS服务和Standalone集群,运行SQL Client客户端,设置属性:
-- 启动HDFS服务
hadoop-daemon.sh start namenode
hadoop-daemon.sh start datanode
-- 启动Flink Standalone集群
export HADOOP_CLASSPATH=`/export/server/hadoop/bin/hadoop classpath`
/export/server/flink/bin/start-cluster.sh
-- 启动SQL Client
/export/server/flink/bin/sql-client.sh embedded \
-j /export/server/flink/lib/hudi-flink-bundle_2.12-0.9.0.jar shell
-- 设置属性
set execution.result-mode=tableau;
set execution.checkpointing.interval=3sec;
-- 流处理模式
SET execution.runtime-mode = streaming;
5.3.1 今日访问量
首先创建输入表:流式加载,Hudi表数据:
CREATE TABLE edu_web_chat_ems_hudi (
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
session_id string,
sid string,
create_time string,
seo_source string,
seo_keywords string,
ip string,
area string,
country string,
province string,
city string,
origin_channel string,
`user` string,
manual_time string,
begin_time string,
end_time string,
last_customer_msg_time_stamp string,
last_agent_msg_time_stamp string,
reply_msg_count string,
msg_count string,
browser_name string,
os_info string,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/ehualu/hudi-warehouse/edu_web_chat_ems_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'read.streaming.enabled' = 'true',
'read.streaming.check-interval' = '5',
'read.tasks' = '1'
);
统计结果,存储至视图View:
CREATE VIEW IF NOT EXISTS view_tmp_web_pv AS
SELECT day_value, COUNT(id) AS total FROM (
SELECT
FROM_UNIXTIME(CAST(create_time AS BIGINT) / 1000, 'yyyy-MM-dd') AS day_value, id
FROM edu_web_chat_ems_hudi
WHERE part = CAST(CURRENT_DATE AS STRING)
) GROUP BY day_value;
保存MySQL数据库:
– SQL Connector MySQL
CREATE TABLE realtime_web_pv_mysql (
report_date STRING,
report_total BIGINT,
PRIMARY KEY (report_date) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1.oldlu.cn:3306/oldlu_rpt',
'driver' = 'com.mysql.cj.jdbc.Driver',
'username' = 'root',
'password' = '123456',
'table-name' = 'realtime_web_pv'
);
– INSERT INTO 插入
INSERT INTO realtime_web_pv_mysql SELECT day_value, total FROM view_tmp_web_pv;
5.3.2 今日咨询量
由于今日访问量与今日咨询量,都是查询Hudi中表:edu_web_chat_emes_hudi,所以前面流式加载增量加载数据以后,此处就不需要。
统计结果,存储至视图View:
CREATE VIEW IF NOT EXISTS view_tmp_stu_consult AS
SELECT day_value, COUNT(id) AS total FROM (
SELECT
FROM_UNIXTIME(CAST(create_time AS BIGINT) / 1000, 'yyyy-MM-dd') AS day_value, id
FROM edu_web_chat_ems_hudi
WHERE part = CAST(CURRENT_DATE AS STRING) AND msg_count > 0
) GROUP BY day_value;
保存MySQL数据库:
– SQL Connector MySQL
CREATE TABLE realtime_stu_consult_mysql (
report_date STRING,
report_total BIGINT,
PRIMARY KEY (report_date) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1.oldlu.cn:3306/oldlu_rpt',
'driver' = 'com.mysql.cj.jdbc.Driver',
'username' = 'root',
'password' = '123456',
'table-name' = 'realtime_stu_consult'
);
– INSERT INTO 插入
INSERT INTO realtime_stu_consult_mysql SELECT day_value, total FROM view_tmp_stu_consult;
5.3.3 今日意向数
首先创建输入表:流式加载,Hudi表数据:
create table edu_customer_relationship_hudi(
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
first_id string,
belonger string,
belonger_name string,
initial_belonger string,
distribution_handler string,
business_scrm_department_id string,
last_visit_time string,
next_visit_time string,
origin_type string,
oldlu_school_id string,
oldlu_subject_id string,
intention_study_type string,
anticipat_signup_date string,
`level` string,
creator string,
current_creator string,
creator_name string,
origin_channel string,
`comment` string,
first_customer_clue_id string,
last_customer_clue_id string,
process_state string,
process_time string,
payment_state string,
payment_time string,
signup_state string,
signup_time string,
notice_state string,
notice_time string,
lock_state string,
lock_time string,
oldlu_clazz_id string,
oldlu_clazz_time string,
payment_url string,
payment_url_time string,
ems_student_id string,
delete_reason string,
deleter string,
deleter_name string,
delete_time string,
course_id string,
course_name string,
delete_comment string,
close_state string,
close_time string,
appeal_id string,
tenant string,
total_fee string,
belonged string,
belonged_time string,
belonger_time string,
transfer string,
transfer_time string,
follow_type string,
transfer_bxg_oa_account string,
transfer_bxg_belonger_name string,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/hudi-warehouse/edu_customer_relationship_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'read.streaming.enabled' = 'true',
'read.streaming.check-interval' = '5',
'read.tasks' = '1'
);
统计结果,存储至视图View:
CREATE VIEW IF NOT EXISTS view_tmp_stu_intention AS
SELECT day_value, COUNT(id) AS total FROM (
SELECT
FROM_UNIXTIME(CAST(create_date_time AS BIGINT) / 1000, 'yyyy-MM-dd') AS day_value, id
FROM edu_customer_relationship_hudi
WHERE part = CAST(CURRENT_DATE AS STRING) AND create_date_time IS NOT NULL AND deleted = 'false'
) GROUP BY day_value;
保存MySQL数据库:
-- SQL Connector MySQL
CREATE TABLE realtime_stu_intention_mysql (
report_date STRING,
report_total BIGINT,
PRIMARY KEY (report_date) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1.oldlu.cn:3306/oldlu_rpt',
'driver' = 'com.mysql.cj.jdbc.Driver',
'username' = 'root',
'password' = '123456',
'table-name' = 'realtime_stu_intention'
);
– INSERT INTO 插入
INSERT INTO realtime_stu_intention_mysql SELECT day_value, total
FROM view_tmp_stu_intention;
5.3.4 今日报名人数
由于今日意向量与今日报名人数,都是查询Hudi中表:edu_customer_relationship_hudi,所以前面流式加载增量加载数据以后,此处就不需要。
统计结果,存储至视图View:
CREATE VIEW IF NOT EXISTS view_tmp_stu_apply AS
SELECT day_value, COUNT(id) AS total FROM (
SELECT
FROM_UNIXTIME(CAST(payment_time AS BIGINT) / 1000, 'yyyy-MM-dd') AS day_value, id
FROM edu_customer_relationship_hudi
WHERE part = CAST(CURRENT_DATE AS STRING) AND payment_time IS NOT NULL
AND payment_state = 'PAID' AND deleted = 'false'
) GROUP BY day_value;
保存MySQL数据库:
– SQL Connector MySQL
CREATE TABLE realtime_stu_apply_mysql (
report_date STRING,
report_total BIGINT,
PRIMARY KEY (report_date) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1.oldlu.cn:3306/oldlu_rpt',
'driver' = 'com.mysql.cj.jdbc.Driver',
'username' = 'root',
'password' = '123456',
'table-name' = 'realtime_stu_apply'
);
– INSERT INTO 插入
INSERT INTO realtime_stu_apply_mysql SELECT day_value, total FROM view_tmp_stu_apply;
5.3.5 今日有效线索量
首先创建输入表:流式加载,Hudi表数据:
create table edu_customer_clue_hudi(
id string PRIMARY KEY NOT ENFORCED,
create_date_time string,
update_date_time string,
deleted string,
customer_id string,
customer_relationship_id string,
session_id string,
sid string,
status string,
`user` string,
create_time string,
platform string,
s_name string,
seo_source string,
seo_keywords string,
ip string,
referrer string,
from_url string,
landing_page_url string,
url_title string,
to_peer string,
manual_time string,
begin_time string,
reply_msg_count string,
total_msg_count string,
msg_count string,
`comment` string,
finish_reason string,
finish_user string,
end_time string,
platform_description string,
browser_name string,
os_info string,
area string,
country string,
province string,
city string,
creator string,
name string,
idcard string,
phone string,
oldlu_school_id string,
oldlu_school string,
oldlu_subject_id string,
oldlu_subject string,
wechat string,
qq string,
email string,
gender string,
`level` string,
origin_type string,
information_way string,
working_years string,
technical_directions string,
customer_state string,
valid string,
anticipat_signup_date string,
clue_state string,
scrm_department_id string,
superior_url string,
superior_source string,
landing_url string,
landing_source string,
info_url string,
info_source string,
origin_channel string,
course_id string,
course_name string,
zhuge_session_id string,
is_repeat string,
tenant string,
activity_id string,
activity_name string,
follow_type string,
shunt_mode_id string,
shunt_employee_group_id string,
part STRING
)
PARTITIONED BY (part)
WITH(
'connector'='hudi',
'path'= 'hdfs://node1.oldlu.cn:8020/hudi-warehouse/edu_customer_clue_hudi',
'table.type'= 'MERGE_ON_READ',
'hoodie.datasource.write.recordkey.field'= 'id',
'write.precombine.field'= 'create_date_time',
'read.streaming.enabled' = 'true',
'read.streaming.check-interval' = '5',
'read.tasks' = '1'
);
统计结果,存储至视图View:
CREATE VIEW IF NOT EXISTS view_tmp_stu_clue AS
SELECT day_value, COUNT(id) AS total FROM (
SELECT
FROM_UNIXTIME(CAST(create_date_time AS BIGINT) / 1000, 'yyyy-MM-dd') AS day_value, id
FROM edu_customer_clue_hudi
WHERE part = CAST(CURRENT_DATE AS STRING) AND clue_state IS NOT NULL AND deleted = 'false'
) GROUP BY day_value;
保存MySQL数据库:
-- SQL Connector MySQL
CREATE TABLE realtime_stu_clue_mysql (
report_date STRING,
report_total BIGINT,
PRIMARY KEY (report_date) NOT ENFORCED
) WITH (
'connector' = 'jdbc',
'url' = 'jdbc:mysql://node1.oldlu.cn:3306/oldlu_rpt',
'driver' = 'com.mysql.cj.jdbc.Driver',
'username' = 'root',
'password' = '123456',
'table-name' = 'realtime_stu_clue'
);
– INSERT INTO 插入
INSERT INTO realtime_stu_clue_mysql SELECT day_value, total FROM view_tmp_stu_clue;
6 FineBI 报表可视化
使用FineBI,连接数据MySQL数据库,加载业务指标报表数据,以不同图表展示