微服务---分布式事务Seata(XA,AT,TCC,SAGA模式基本使用)

news2024/11/28 12:42:06

分布式事务

1.分布式事务问题

1.1.本地事务

本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:

image-20210724165045186

1.2.分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库。

image-20210724165338958

订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。

但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。

此时ACID难以满足,这是分布式事务要解决的问题

1.3.演示分布式事务问题

我们通过一个案例来演示分布式事务的问题:

1)创建数据库,名为seata_demo,然后导入SQL文件:

DROP TABLE IF EXISTS `account_tbl`;
CREATE TABLE `account_tbl`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `money` int(11) UNSIGNED NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 2 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

-- ----------------------------
-- Records of account_tbl
-- ----------------------------
INSERT INTO `account_tbl` VALUES (1, 'user202103032042012', 1000);

-- ----------------------------
-- Table structure for order_tbl
-- ----------------------------
DROP TABLE IF EXISTS `order_tbl`;
CREATE TABLE `order_tbl`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `commodity_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `count` int(11) NULL DEFAULT 0,
  `money` int(11) NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

-- ----------------------------
-- Records of order_tbl
-- ----------------------------

-- ----------------------------
-- Table structure for storage_tbl
-- ----------------------------
DROP TABLE IF EXISTS `storage_tbl`;
CREATE TABLE `storage_tbl`  (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `commodity_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `count` int(11) UNSIGNED NULL DEFAULT 0,
  PRIMARY KEY (`id`) USING BTREE,
  UNIQUE INDEX `commodity_code`(`commodity_code`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 2 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;

-- ----------------------------
-- Records of storage_tbl
-- ----------------------------
INSERT INTO `storage_tbl` VALUES (1, '100202003032041', 10);

SET FOREIGN_KEY_CHECKS = 1;

2)导入提供的微服务:

微服务结构如下:

image-20210724165729273

其中:

seata-demo:父工程,负责管理项目依赖

  • account-service:账户服务,负责管理用户的资金账户。提供扣减余额的接口
  • storage-service:库存服务,负责管理商品库存。提供扣减库存的接口
  • order-service:订单服务,负责管理订单。创建订单时,需要调用account-service和storage-service

3)启动nacos、所有微服务

4)测试下单功能,发出Post请求:

请求如下:

curl --location --request POST 'http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=20&money=200'

如图:

image-20210724170113404

测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题。

2.理论基础

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。

2.1.CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)

image-20210724170517944

它们的第一个字母分别是 C、A、P。

Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

2.1.1.一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

比如现在包含两个节点,其中的初始数据是一致的:

image-20210724170704694

当我们修改其中一个节点的数据时,两者的数据产生了差异:

image-20210724170735847

要想保住一致性,就必须实现node01 到 node02的数据 同步:

image-20210724170834855

2.1.2.可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。

如图,有三个节点的集群,访问任何一个都可以及时得到响应:

image-20210724170932072

当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:

image-20210724171007516

2.1.3.分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。

image-20210724171041210

Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务

2.1.4.矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务有必须对外保证服务。因此Partition Tolerance不可避免。

当节点接收到新的数据变更时,就会出现问题了:

image-20210724171546472

如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。

也就是说,在P一定会出现的情况下,A和C之间只能实现一个。

2.2.BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available (基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
  • **Soft State(软状态):**在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

2.3.解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。

  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)

image-20210724172123567

这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

3.初识Seata

Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。

官网地址:http://seata.io/,其中的文档、播客中提供了大量的使用说明、源码分析。

image-20210724172225817

3.1.Seata的架构

Seata事务管理中有三个重要的角色:

  • TC (Transaction Coordinator) - **事务协调者:**维护全局和分支事务的状态,协调全局事务提交或回滚。

  • TM (Transaction Manager) - **事务管理器:**定义全局事务的范围、开始全局事务、提交或回滚全局事务。

  • RM (Resource Manager) - **资源管理器:**管理分支事务处理的资源,与TC交谈以注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。

整体的架构如图:

image-20210724172326452

Seata基于上述架构提供了四种不同的分布式事务解决方案:

  • XA模式:强一致性分阶段事务模式,牺牲了一定的可用性,无业务侵入
  • TCC模式:最终一致的分阶段事务模式,有业务侵入
  • AT模式:最终一致的分阶段事务模式,无业务侵入,也是Seata的默认模式
  • SAGA模式:长事务模式,有业务侵入

无论哪种方案,都离不开TC,也就是事务的协调者。

3.2.部署TC服务

3.2.1部署Seata的tc-server

3.2.1.1.下载

首先我们要下载seata-server包,地址在http://seata.io/zh-cn/blog/download.html

3.2.1.2.解压

在非中文目录解压缩这个zip包,其目录结构如下:

image-20210622202515014

3.2.1.3.修改配置

修改conf目录下的registry.conf文件:

image-20210622202622874

内容如下:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "127.0.0.1:8848"
    group = "DEFAULT_GROUP"
    namespace = ""
    cluster = "SH"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

3.2.1.4.在nacos添加配置

特别注意,为了让tc服务的集群可以共享配置,我们选择了nacos作为统一配置中心。因此服务端配置文件seataServer.properties文件需要在nacos中配好。

格式如下:

image-20210622203609227

配置内容如下:

# 数据存储方式,db代表数据库
store.mode=db
store.db.datasource=druid
store.db.dbType=mysql
store.db.driverClassName=com.mysql.jdbc.Driver
store.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=true
store.db.user=root
store.db.password=123456
store.db.minConn=5
store.db.maxConn=30
store.db.globalTable=global_table
store.db.branchTable=branch_table
store.db.queryLimit=100
store.db.lockTable=lock_table
store.db.maxWait=5000
# 事务、日志等配置
server.recovery.committingRetryPeriod=1000
server.recovery.asynCommittingRetryPeriod=1000
server.recovery.rollbackingRetryPeriod=1000
server.recovery.timeoutRetryPeriod=1000
server.maxCommitRetryTimeout=-1
server.maxRollbackRetryTimeout=-1
server.rollbackRetryTimeoutUnlockEnable=false
server.undo.logSaveDays=7
server.undo.logDeletePeriod=86400000

# 客户端与服务端传输方式
transport.serialization=seata
transport.compressor=none
# 关闭metrics功能,提高性能
metrics.enabled=false
metrics.registryType=compact
metrics.exporterList=prometheus
metrics.exporterPrometheusPort=9898

其中的数据库地址、用户名、密码都需要修改成你自己的数据库信息。

3.2.1.5.创建数据库表

特别注意:tc服务在管理分布式事务时,需要记录事务相关数据到数据库中,你需要提前创建好这些表。

新建一个名为seata的数据库,运行sql文件:

这些表主要记录全局事务、分支事务、全局锁信息:

SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;

-- ----------------------------
-- 分支事务表
-- ----------------------------
DROP TABLE IF EXISTS `branch_table`;
CREATE TABLE `branch_table`  (
  `branch_id` bigint(20) NOT NULL,
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `status` tinyint(4) NULL DEFAULT NULL,
  `client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime(6) NULL DEFAULT NULL,
  `gmt_modified` datetime(6) NULL DEFAULT NULL,
  PRIMARY KEY (`branch_id`) USING BTREE,
  INDEX `idx_xid`(`xid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

-- ----------------------------
-- 全局事务表
-- ----------------------------
DROP TABLE IF EXISTS `global_table`;
CREATE TABLE `global_table`  (
  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `status` tinyint(4) NOT NULL,
  `application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `timeout` int(11) NULL DEFAULT NULL,
  `begin_time` bigint(20) NULL DEFAULT NULL,
  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`xid`) USING BTREE,
  INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,
  INDEX `idx_transaction_id`(`transaction_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;

SET FOREIGN_KEY_CHECKS = 1;

3.2.1.6.启动TC服务

进入bin目录,运行其中的seata-server.bat即可:

image-20210622205427318

启动成功后,seata-server应该已经注册到nacos注册中心了。

打开浏览器,访问nacos地址:http://localhost:8848,然后进入服务列表页面,可以看到seata-tc-server的信息:

image-20210622205901450

3.3.微服务集成Seata

我们以order-service为例来演示。

3.3.1.引入依赖

首先,在order-service中引入依赖:

<!--seata-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-seata</artifactId>
    <exclusions>
        <!--版本较低,1.3.0,因此排除--> 
        <exclusion>
            <artifactId>seata-spring-boot-starter</artifactId>
            <groupId>io.seata</groupId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>io.seata</groupId>
    <artifactId>seata-spring-boot-starter</artifactId>
    <!--seata starter 采用1.4.2版本-->
    <version>${seata.version}</version>
</dependency>

3.3.2.配置TC地址

在order-service中的application.yml中,配置TC服务信息,通过注册中心nacos,结合服务名称获取TC地址:

seata:
  registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
    type: nacos # 注册中心类型 nacos
    nacos:
      server-addr: 127.0.0.1:8848 # nacos地址
      namespace: "" # namespace,默认为空
      group: DEFAULT_GROUP # 分组,默认是DEFAULT_GROUP
      application: seata-tc-server # seata服务名称
      username: nacos
      password: nacos
  tx-service-group: seata-demo # 事务组名称
  service:
    vgroup-mapping: # 事务组与cluster的映射关系
      seata-demo: SH

微服务如何根据这些配置寻找TC的地址呢?

我们知道注册到Nacos中的微服务,确定一个具体实例需要四个信息:

  • namespace:命名空间
  • group:分组
  • application:服务名
  • cluster:集群名

以上四个信息,在刚才的yaml文件中都能找到:

image-20210724173654258

namespace为空,就是默认的public

结合起来,TC服务的信息就是:public@DEFAULT_GROUP@seata-tc-server@SH,这样就能确定TC服务集群了。然后就可以去Nacos拉取对应的实例信息了。

3.3.3.其它服务

其它两个微服务也都参考order-service的步骤来做,完全一样。

4.动手实践

下面我们就一起学习下Seata中的四种不同的事务模式。

4.1.XA模式

XA 规范 是 X/Open 组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM与局部的RM之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。

4.1.1.两阶段提交

XA是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。

正常情况:

image-20210724174102768

异常情况:

image-20210724174234987

一阶段:

  • 事务协调者通知每个事物参与者执行本地事务
  • 本地事务执行完成后报告事务执行状态给事务协调者,此时事务不提交,继续持有数据库锁

二阶段:

  • 事务协调者基于一阶段的报告来判断下一步操作
    • 如果一阶段都成功,则通知所有事务参与者,提交事务
    • 如果一阶段任意一个参与者失败,则通知所有事务参与者回滚事务

4.1.2.Seata的XA模型

Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:

image-20210724174424070

RM一阶段的工作:

​ ① 注册分支事务到TC

​ ② 执行分支业务sql但不提交

​ ③ 报告执行状态到TC

TC二阶段的工作:

  • TC检测各分支事务执行状态

    a.如果都成功,通知所有RM提交事务

    b.如果有失败,通知所有RM回滚事务

RM二阶段的工作:

  • 接收TC指令,提交或回滚事务

4.1.3.优缺点

XA模式的优点是什么?

  • 事务的强一致性,满足ACID原则。
  • 常用数据库都支持,实现简单,并且没有代码侵入

XA模式的缺点是什么?

  • 因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
  • 依赖关系型数据库实现事务

4.1.4.实现XA模式

Seata的starter已经完成了XA模式的自动装配,实现非常简单,步骤如下:

1)修改application.yml文件(每个参与事务的微服务),开启XA模式:

seata:
  data-source-proxy-mode: XA

2)给发起全局事务的入口方法添加@GlobalTransactional注解:

本例中是OrderServiceImpl中的create方法.

image-20210724174859556

3)重启服务并测试

重启order-service,再次测试,发现无论怎样,三个微服务都能成功回滚。

4.2.AT模式

AT模式同样是分阶段提交的事务模型,不过缺弥补了XA模型中资源锁定周期过长的缺陷。

4.2.1.Seata的AT模型

基本流程图:

image-20210724175327511

阶段一RM的工作:

  • 注册分支事务
  • 记录undo-log(数据快照)
  • 执行业务sql并提交
  • 报告事务状态

阶段二提交时RM的工作:

  • 删除undo-log即可

阶段二回滚时RM的工作:

  • 根据undo-log恢复数据到更新前

4.2.2.流程梳理

我们用一个真实的业务来梳理下AT模式的原理。

比如,现在又一个数据库表,记录用户余额:

idmoney
1100

其中一个分支业务要执行的SQL为:

update tb_account set money = money - 10 where id = 1

AT模式下,当前分支事务执行流程如下:

一阶段:

1)TM发起并注册全局事务到TC

2)TM调用分支事务

3)分支事务准备执行业务SQL

4)RM拦截业务SQL,根据where条件查询原始数据,形成快照。

{
    "id": 1, "money": 100
}

5)RM执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90

6)RM报告本地事务状态给TC

二阶段:

1)TM通知TC事务结束

2)TC检查分支事务状态

​ a)如果都成功,则立即删除快照

​ b)如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100

流程图:

image-20210724180722921

4.2.3.AT与XA的区别

简述AT模式与XA模式最大的区别是什么?

  • XA模式一阶段不提交事务,锁定资源;AT模式一阶段直接提交,不锁定资源。
  • XA模式依赖数据库机制实现回滚;AT模式利用数据快照实现数据回滚。
  • XA模式强一致;AT模式最终一致

4.2.4.脏写问题

在多线程并发访问AT模式的分布式事务时,有可能出现脏写问题,如图:

image-20210724181541234

解决思路就是引入了全局锁的概念。在释放DB锁之前,先拿到全局锁。避免同一时刻有另外一个事务来操作当前数据。

image-20210724181843029

4.2.5.优缺点

AT模式的优点:

  • 一阶段完成直接提交事务,释放数据库资源,性能比较好
  • 利用全局锁实现读写隔离
  • 没有代码侵入,框架自动完成回滚和提交

AT模式的缺点:

  • 两阶段之间属于软状态,属于最终一致
  • 框架的快照功能会影响性能,但比XA模式要好很多

4.2.6.实现AT模式

AT模式中的快照生成、回滚等动作都是由框架自动完成,没有任何代码侵入,因此实现非常简单。

只不过,AT模式需要一个表来记录全局锁、另一张表来记录数据快照undo_log。

1)导入数据库表,记录全局锁

导入Sql文件:seata-at.sql,其中lock_table导入到TC服务关联的数据库,undo_log表导入到微服务关联的数据库:

DROP TABLE IF EXISTS `undo_log`;
CREATE TABLE `undo_log`  (
  `branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',
  `xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',
  `context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',
  `rollback_info` longblob NOT NULL COMMENT 'rollback info',
  `log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',
  `log_created` datetime(6) NOT NULL COMMENT 'create datetime',
  `log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',
  UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;

-- ----------------------------
-- Records of undo_log
-- ----------------------------



-- ----------------------------
-- Table structure for lock_table
-- ----------------------------
DROP TABLE IF EXISTS `lock_table`;
CREATE TABLE `lock_table`  (
  `row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
  `xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `transaction_id` bigint(20) NULL DEFAULT NULL,
  `branch_id` bigint(20) NOT NULL,
  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
  `gmt_create` datetime NULL DEFAULT NULL,
  `gmt_modified` datetime NULL DEFAULT NULL,
  PRIMARY KEY (`row_key`) USING BTREE,
  INDEX `idx_branch_id`(`branch_id`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;


2)修改application.yml文件,将事务模式修改为AT模式即可:

seata:
  data-source-proxy-mode: AT # 默认就是AT

3)重启服务并测试

4.3.TCC模式

TCC模式与AT模式非常相似,每阶段都是独立事务,不同的是TCC通过人工编码来实现数据恢复。需要实现三个方法:

  • Try:资源的检测和预留;

  • Confirm:完成资源操作业务;要求 Try 成功 Confirm 一定要能成功。

  • Cancel:预留资源释放,可以理解为try的反向操作。

4.3.1.流程分析

举例,一个扣减用户余额的业务。假设账户A原来余额是100,需要余额扣减30元。

  • 阶段一( Try ):检查余额是否充足,如果充足则冻结金额增加30元,可用余额扣除30

初识余额:

image-20210724182424907

余额充足,可以冻结:

image-20210724182457951

此时,总金额 = 冻结金额 + 可用金额,数量依然是100不变。事务直接提交无需等待其它事务。

  • 阶段二(Confirm):假如要提交(Confirm),则冻结金额扣减30

确认可以提交,不过之前可用金额已经扣减过了,这里只要清除冻结金额就好了:

image-20210724182706011

此时,总金额 = 冻结金额 + 可用金额 = 0 + 70 = 70元

  • 阶段二(Canncel):如果要回滚(Cancel),则冻结金额扣减30,可用余额增加30

需要回滚,那么就要释放冻结金额,恢复可用金额:

image-20210724182810734

4.3.2.Seata的TCC模型

Seata中的TCC模型依然延续之前的事务架构,如图:

image-20210724182937713

4.3.3.优缺点

TCC模式的每个阶段是做什么的?

  • Try:资源检查和预留
  • Confirm:业务执行和提交
  • Cancel:预留资源的释放

TCC的优点是什么?

  • 一阶段完成直接提交事务,释放数据库资源,性能好
  • 相比AT模型,无需生成快照,无需使用全局锁,性能最强
  • 不依赖数据库事务,而是依赖补偿操作,可以用于非事务型数据库

TCC的缺点是什么?

  • 有代码侵入,需要人为编写try、Confirm和Cancel接口,太麻烦
  • 软状态,事务是最终一致
  • 需要考虑Confirm和Cancel的失败情况,做好幂等处理

4.3.4.事务悬挂和空回滚

1)空回滚

当某分支事务的try阶段阻塞时,可能导致全局事务超时而触发二阶段的cancel操作。在未执行try操作时先执行了cancel操作,这时cancel不能做回滚,就是空回滚

如图:

image-20210724183426891

执行cancel操作时,应当判断try是否已经执行,如果尚未执行,则应该空回滚。

2)业务悬挂

对于已经空回滚的业务,之前被阻塞的try操作恢复,继续执行try,就永远不可能confirm或cancel ,事务一直处于中间状态,这就是业务悬挂

执行try操作时,应当判断cancel是否已经执行过了,如果已经执行,应当阻止空回滚后的try操作,避免悬挂

4.3.5.实现TCC模式

解决空回滚和业务悬挂问题,必须要记录当前事务状态,是在try、还是cancel?

1)思路分析

这里我们定义一张表:

CREATE TABLE `account_freeze_tbl` (
  `xid` varchar(128) NOT NULL,
  `user_id` varchar(255) DEFAULT NULL COMMENT '用户id',
  `freeze_money` int(11) unsigned DEFAULT '0' COMMENT '冻结金额',
  `state` int(1) DEFAULT NULL COMMENT '事务状态,0:try,1:confirm,2:cancel',
  PRIMARY KEY (`xid`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8 ROW_FORMAT=COMPACT;

其中:

  • xid:是全局事务id
  • freeze_money:用来记录用户冻结金额
  • state:用来记录事务状态

那此时,我们的业务开怎么做呢?

  • Try业务:
    • 记录冻结金额和事务状态到account_freeze表
    • 扣减account表可用金额
  • Confirm业务
    • 根据xid删除account_freeze表的冻结记录
  • Cancel业务
    • 修改account_freeze表,冻结金额为0,state为2
    • 修改account表,恢复可用金额
  • 如何判断是否空回滚?
    • cancel业务中,根据xid查询account_freeze,如果为null则说明try还没做,需要空回滚
  • 如何避免业务悬挂?
    • try业务中,根据xid查询account_freeze ,如果已经存在则证明Cancel已经执行,拒绝执行try业务

接下来,我们改造account-service,利用TCC实现余额扣减功能。

2)声明TCC接口

TCC的Try、Confirm、Cancel方法都需要在接口中基于注解来声明,

我们在account-service项目中的cn.java.account.service包中新建一个接口,声明TCC三个接口:

package cn.java.account.service;

import io.seata.rm.tcc.api.BusinessActionContext;
import io.seata.rm.tcc.api.BusinessActionContextParameter;
import io.seata.rm.tcc.api.LocalTCC;
import io.seata.rm.tcc.api.TwoPhaseBusinessAction;

@LocalTCC
public interface AccountTCCService {

    @TwoPhaseBusinessAction(name = "deduct", commitMethod = "confirm", rollbackMethod = "cancel")
    void deduct(@BusinessActionContextParameter(paramName = "userId") String userId,
                @BusinessActionContextParameter(paramName = "money")int money);

    boolean confirm(BusinessActionContext ctx);

    boolean cancel(BusinessActionContext ctx);
}

3)编写实现类

在account-service服务中的cn.java.account.service.impl包下新建一个类,实现TCC业务:

package cn.java.account.service.impl;

import cn.java.account.entity.AccountFreeze;
import cn.java.account.mapper.AccountFreezeMapper;
import cn.java.account.mapper.AccountMapper;
import cn.java.account.service.AccountTCCService;
import io.seata.core.context.RootContext;
import io.seata.rm.tcc.api.BusinessActionContext;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

@Service
@Slf4j
public class AccountTCCServiceImpl implements AccountTCCService {

    @Autowired
    private AccountMapper accountMapper;
    @Autowired
    private AccountFreezeMapper freezeMapper;

    @Override
    @Transactional
    public void deduct(String userId, int money) {
        // 0.获取事务id
        String xid = RootContext.getXID();
        // 1.扣减可用余额
        accountMapper.deduct(userId, money);
        // 2.记录冻结金额,事务状态
        AccountFreeze freeze = new AccountFreeze();
        freeze.setUserId(userId);
        freeze.setFreezeMoney(money);
        freeze.setState(AccountFreeze.State.TRY);
        freeze.setXid(xid);
        freezeMapper.insert(freeze);
    }

    @Override
    public boolean confirm(BusinessActionContext ctx) {
        // 1.获取事务id
        String xid = ctx.getXid();
        // 2.根据id删除冻结记录
        int count = freezeMapper.deleteById(xid);
        return count == 1;
    }

    @Override
    public boolean cancel(BusinessActionContext ctx) {
        // 0.查询冻结记录
        String xid = ctx.getXid();
        AccountFreeze freeze = freezeMapper.selectById(xid);

        // 1.恢复可用余额
        accountMapper.refund(freeze.getUserId(), freeze.getFreezeMoney());
        // 2.将冻结金额清零,状态改为CANCEL
        freeze.setFreezeMoney(0);
        freeze.setState(AccountFreeze.State.CANCEL);
        int count = freezeMapper.updateById(freeze);
        return count == 1;
    }
}

4.4.SAGA模式

Saga 模式是 Seata 即将开源的长事务解决方案,将由蚂蚁金服主要贡献。

其理论基础是Hector & Kenneth 在1987年发表的论文Sagas。

Seata官网对于Saga的指南:https://seata.io/zh-cn/docs/user/saga.html

4.4.1.原理

在 Saga 模式下,分布式事务内有多个参与者,每一个参与者都是一个冲正补偿服务,需要用户根据业务场景实现其正向操作和逆向回滚操作。

分布式事务执行过程中,依次执行各参与者的正向操作,如果所有正向操作均执行成功,那么分布式事务提交。如果任何一个正向操作执行失败,那么分布式事务会去退回去执行前面各参与者的逆向回滚操作,回滚已提交的参与者,使分布式事务回到初始状态。

image-20210724184846396

Saga也分为两个阶段:

  • 一阶段:直接提交本地事务
  • 二阶段:成功则什么都不做;失败则通过编写补偿业务来回滚

4.4.2.优缺点

优点:

  • 事务参与者可以基于事件驱动实现异步调用,吞吐高
  • 一阶段直接提交事务,无锁,性能好
  • 不用编写TCC中的三个阶段,实现简单

缺点:

  • 软状态持续时间不确定,时效性差
  • 没有锁,没有事务隔离,会有脏写

4.5.四种模式对比

我们从以下几个方面来对比四种实现:

  • 一致性:能否保证事务的一致性?强一致还是最终一致?
  • 隔离性:事务之间的隔离性如何?
  • 代码侵入:是否需要对业务代码改造?
  • 性能:有无性能损耗?
  • 场景:常见的业务场景

如图:

image-20210724185021819

5.高可用

Seata的TC服务作为分布式事务核心,一定要保证集群的高可用性。

5.1.高可用架构模型

搭建TC服务集群非常简单,启动多个TC服务,注册到nacos即可。

但集群并不能确保100%安全,万一集群所在机房故障怎么办?所以如果要求较高,一般都会做异地多机房容灾。

比如一个TC集群在上海,另一个TC集群在杭州:

image-20210724185240957

微服务基于事务组(tx-service-group)与TC集群的映射关系,来查找当前应该使用哪个TC集群。当SH集群故障时,只需要将vgroup-mapping中的映射关系改成HZ。则所有微服务就会切换到HZ的TC集群了。

5.2.实现高可用

5.2.1.模拟异地容灾的TC集群

计划启动两台seata的tc服务节点:

节点名称ip地址端口号集群名称
seata127.0.0.18091SH
seata2127.0.0.18092HZ

之前我们已经启动了一台seata服务,端口是8091,集群名为SH。

现在,将seata目录复制一份,起名为seata2

修改seata2/conf/registry.conf内容如下:

registry {
  # tc服务的注册中心类,这里选择nacos,也可以是eureka、zookeeper等
  type = "nacos"

  nacos {
    # seata tc 服务注册到 nacos的服务名称,可以自定义
    application = "seata-tc-server"
    serverAddr = "127.0.0.1:8848"
    group = "DEFAULT_GROUP"
    namespace = ""
    cluster = "HZ"
    username = "nacos"
    password = "nacos"
  }
}

config {
  # 读取tc服务端的配置文件的方式,这里是从nacos配置中心读取,这样如果tc是集群,可以共享配置
  type = "nacos"
  # 配置nacos地址等信息
  nacos {
    serverAddr = "127.0.0.1:8848"
    namespace = ""
    group = "SEATA_GROUP"
    username = "nacos"
    password = "nacos"
    dataId = "seataServer.properties"
  }
}

进入seata2/bin目录,然后运行命令:

seata-server.bat -p 8092

打开nacos控制台,查看服务列表:

image-20210624151150840

点进详情查看:

image-20210624151221747

5.2.2.将事务组映射配置到nacos

接下来,我们需要将tx-service-group与cluster的映射关系都配置到nacos配置中心。

新建一个配置:

image-20210624151507072

配置的内容如下:

# 事务组映射关系
service.vgroupMapping.seata-demo=SH

service.enableDegrade=false
service.disableGlobalTransaction=false
# 与TC服务的通信配置
transport.type=TCP
transport.server=NIO
transport.heartbeat=true
transport.enableClientBatchSendRequest=false
transport.threadFactory.bossThreadPrefix=NettyBoss
transport.threadFactory.workerThreadPrefix=NettyServerNIOWorker
transport.threadFactory.serverExecutorThreadPrefix=NettyServerBizHandler
transport.threadFactory.shareBossWorker=false
transport.threadFactory.clientSelectorThreadPrefix=NettyClientSelector
transport.threadFactory.clientSelectorThreadSize=1
transport.threadFactory.clientWorkerThreadPrefix=NettyClientWorkerThread
transport.threadFactory.bossThreadSize=1
transport.threadFactory.workerThreadSize=default
transport.shutdown.wait=3
# RM配置
client.rm.asyncCommitBufferLimit=10000
client.rm.lock.retryInterval=10
client.rm.lock.retryTimes=30
client.rm.lock.retryPolicyBranchRollbackOnConflict=true
client.rm.reportRetryCount=5
client.rm.tableMetaCheckEnable=false
client.rm.tableMetaCheckerInterval=60000
client.rm.sqlParserType=druid
client.rm.reportSuccessEnable=false
client.rm.sagaBranchRegisterEnable=false
# TM配置
client.tm.commitRetryCount=5
client.tm.rollbackRetryCount=5
client.tm.defaultGlobalTransactionTimeout=60000
client.tm.degradeCheck=false
client.tm.degradeCheckAllowTimes=10
client.tm.degradeCheckPeriod=2000

# undo日志配置
client.undo.dataValidation=true
client.undo.logSerialization=jackson
client.undo.onlyCareUpdateColumns=true
client.undo.logTable=undo_log
client.undo.compress.enable=true
client.undo.compress.type=zip
client.undo.compress.threshold=64k
client.log.exceptionRate=100

5.2.3.微服务读取nacos配置

接下来,需要修改每一个微服务的application.yml文件,让微服务读取nacos中的client.properties文件:

seata:
  config:
    type: nacos
    nacos:
      server-addr: 127.0.0.1:8848
      username: nacos
      password: nacos
      group: SEATA_GROUP
      data-id: client.properties

重启微服务,现在微服务到底是连接tc的SH集群,还是tc的HZ集群,都统一由nacos的client.properties来决定了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/470842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开发中不可轻视的接口文档

接口文档是描述如何与软件系统中的特定接口进行交互的文档&#xff0c;通常包含接口的名称、描述、请求和响应的格式、参数、返回值、错误码、调用示例等信息。它是开发人员在设计和开发软件系统时必不可少的参考资料。 日常工作中&#xff0c;运用接口文档最多的是前后端的同…

提高效率:使用这些工具,让你开发和学习更简单

&#x1f34e;道阻且长&#xff0c;行则将至。&#x1f353; 目录 零、ChatGPT一、代码1.代码备忘清单2.菜鸟教程3.代码转图片4.代码在线运行5.LaTeX 公式编辑器6.GitCode、GitHub 等代码仓库平台 二、绘图1.Canva 可画2.Echarts Js画图3.算法可视化4.函数绘图5.遇到 Alt 截不…

236:vue+openlayers输入经纬度坐标,校验并在地图上标记点,enter提交

第236个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+openlayers中输入坐标点,在地图上显示点图形。这里面校验了输入的经纬度坐标,同时使用了@keyup.enter.native来做提交处理。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果 文章目录 示例效果…

第七章SpingMVC

1.MVC模式 视图&#xff08;View&#xff09;-对应组件&#xff1a;JSP或者HTML文件 控制器&#xff08;Controller&#xff09;-对应组件&#xff1a;Servlet 模型&#xff08;Model&#xff09; -对应组件&#xff1a;JavaBean 2.MVC模式具体说明 JSP&#xff1a;负责生成动态…

python resnet实例,残差网络医学分类,基于resnet医学图像分类任务;医学图像处理实战

一&#xff0c;数据集介绍&#xff1a; 数据预处理&#xff1a; 把数据处理成相同大小&#xff1a; 数据集&#xff1a; PathMNIST:结直肠癌组织学切片&#xff1b;ChestMNIST&#xff1a;胸部CT数据集&#xff0c;来源于NIH-ChestXray14 dataset&#xff1b;DermaMNIST&#…

【刷题之路Ⅱ】LeetCode 138. 复制带随机指针的链表

【刷题之路Ⅱ】LeetCode 138. 复制带随机指针的链表 一、题目描述二、解题难点分析方法——插入拷贝节点2、将拷贝节点插入到原节点的后面3、复制原节点的random到拷贝节点中4、将拷贝节点尾插到新链表中并恢复原链表的结构 一、题目描述 原题连接&#xff1a; 138. 复制带随机…

考研拓展:汇编基础

一.说明 本篇博客是基于考研之计算机组成原理中的程序机器级代码表示进行学习的&#xff0c;并不是从汇编语言这一门单独的课程来学习的&#xff0c;涉及的汇编语言知识多是帮助你学习考研之计算机组成原理中对应的考点。 二.相关寄存器 1.相关寄存器 X86处理器中有8个32位…

【三十天精通Vue 3】第二十天 Vue 3的性能优化详解

✅创作者&#xff1a;陈书予 &#x1f389;个人主页&#xff1a;陈书予的个人主页 &#x1f341;陈书予的个人社区&#xff0c;欢迎你的加入: 陈书予的社区 &#x1f31f;专栏地址: 三十天精通 Vue 3 文章目录 引言一、Vue3 性能优化的概念1.1 为什么需要性能优化1.2 性能优化…

基于dsp+fpga+AD+ENDAC的半导体运动台高速数据采集电路仿真设计(四)

整个调试验证与仿真分析分三个步骤&#xff1a;第一步是进行 PCB 检查及电气特性测试&#xff0c;主 要用来验证硬件设计是否正常工作&#xff1b;第二步进行各子模块功能测试&#xff0c;包括高速光纤串行 通信的稳定性与可靠性测试&#xff0c; A/D 及 D/A 转换特性测…

26从零开始学Java之如何对数组进行排序与二分查找?

作者&#xff1a;孙玉昌&#xff0c;昵称【一一哥】&#xff0c;另外【壹壹哥】也是我哦 千锋教育高级教研员、CSDN博客专家、万粉博主、阿里云专家博主、掘金优质作者 前言 在上一篇文章中&#xff0c;壹哥给大家讲解了数组的扩容、缩容及拷贝方式。接下来在今天的文章中&…

深眸科技|深度学习、3D视觉融入机器视觉系统,实现生产数智化

随着“中国制造2025”战略加速落实&#xff0c;制造业生产线正在加紧向智能化、自动化和数字化转型之路迈进。而人工智能技术的兴起以及边缘算力持续提升的同时&#xff0c;机器视觉及其相关技术也在飞速发展&#xff0c;并不断渗透进工业领域&#xff0c;拓展应用场景的同时&a…

Apache Druid中Kafka配置远程代码执行漏洞(MPS-2023-6623)

漏洞描述 Apache Druid 是一个高性能的数据分析引擎。 Kafka Connect模块曾出现JNDI注入漏洞(CVE-2023-25194)&#xff0c;近期安全研究人员发现Apache Druid由于支持从 Kafka 加载数据的实现满足其利用条件&#xff0c;攻击者可通过修改 Kafka 连接配置属性进行 JNDI 注入攻…

软件架构中间件技术

中间件的定义 其实中间件是属于构件的一种。是一种独立的系统软件或服务程序&#xff0c;可以帮助分布式应用软件在不同技术之间共享资源。 我们把它定性为一类系统软件&#xff0c;比如我们常说的消息中间件&#xff0c;数据库中间件等等都是中间件的一种体现。一般情况都是…

减少 try catch ,可以这样干

软件开发过程中&#xff0c;不可避免的是需要处理各种异常&#xff0c;就我自己来说&#xff0c;至少有一半以上的时间都是在处理各种异常情况&#xff0c;所以代码中就会出现大量的try {...} catch {...} finally {...}代码块&#xff0c;不仅有大量的冗余代码&#xff0c;而且…

d3.js学习笔记①创建html文档

本人之前从未学过HTML、CSS、JavaScript&#xff0c;然而我导是做前端的&#xff0c;要求我必须在三周内掌握d3.js&#xff0c;我只能从0学起并以此记录自己的学习过程。 首先对这三种语言有一个初步的认识&#xff1a;HTML是用于搭建网页框架&#xff0c;CSS是美化网页的&…

软件设计师考试——计算机网络、系统安全分析和设计部分

计算机网路 七层模型 OSI/RM七层模型 网络技术标准与协议 TCP协议 DHCP协议 DNS协议 计算机网络的分类——拓扑结构 按分布范围&#xff1a; 局域网城域网广域网因特网 按拓扑结构&#xff1a; 总线型星型环型 网络规划与设计 逻辑网络设计 物理网络设计 分层设计 IP地址…

VirboxLM-免服务版授权码,快速实现一机一码

一、产品介绍 ​ 授权码是由深盾科技开发的一款软件保护及授权管理产品 ​&#xff0c;一方面要保护软件代码不被逆向&#xff0c;另一方面要控制软件的授权使用。软件用户只需要输入授权码&#xff08;由数字和字母组成的一串字符&#xff09;&#xff0c;激活授权码后即可使…

这年头,谁还在「贩卖」生活方式?

【潮汐商业评论/原创】 “我已经很久没有追寻过品牌购物了”Anna如是说。 如今的Anna对商品的选择往往会考虑性价比以及简洁的外观&#xff0c;去品牌化、简单已经成为其新的生活方式。 日本作者三浦展在《第四消费时代》一书中提到&#xff0c;在第三消费社会&#xff0c;新…

Java版本企业工程项目管理系统平台源码(三控:进度组织、质量安全、预算资金成本、二平台:招采、设计管理)

工程项目管理软件&#xff08;工程项目管理系统&#xff09;对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营&#xff0c;全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#…

Android 获取奔溃crash的日志(adb logcat或者dropbox)

1.通过adb logcat 来获取&#xff1a; 使用场景&#xff1a;测试或者开发小伙伴 抓取。 先执行adb logcat -c 清理缓存日志 接着&#xff0c;抓取当前时间段开始的日志: adb logcat -v time >D:/crash.log 也可以抓取指定进程的日志&#xff1a; adb logcat -v time | fi…