note
torch-model-archiver
打包模型;利用torchserve
加载前面打包的模型,并以grpc和http等接口往外提供推理服务- 启动模型的api服务、
curl
命令发送http post请求,请求模型服务API;流程和TensorFlow serving流程大同小异
文章目录
- note
- 一、torchserve和archiver模块
- 二、Speech2Text Wav2Vec2模型部署
- 2.1 准备模型和自定义handler
- 2.2 打包模型和启动模型api服务
- 2.3 相关参数记录
- Reference
一、torchserve和archiver模块
- 模型部署需要用到两个模块
- torchserve用来模型部署
- torch-model-archiver打包模型
pip:
- torch-workflow-archiver
- torch-model-archiver
- torchserve
二、Speech2Text Wav2Vec2模型部署
2.1 准备模型和自定义handler
- Wav2Vec2语音转文本的模型。这里我们为了简化流程从huggingface下载对应的模型,进行本地化利用torchserve部署
hander
将原始data进行转为模型输入所需的格式;nlp中很多任务可以直接用torchtext的text_classifier
。
# 1. 导入huggingface模型
from transformers import AutoModelForCTC, AutoProcessor
import os
modelname = "facebook/wav2vec2-base-960h"
model = AutoModelForCTC.from_pretrained(modelname)
processor = AutoProcessor.from_pretrained(modelname)
modelpath = "model"
os.makedirs(modelpath, exist_ok=True)
model.save_pretrained(modelpath)
processor.save_pretrained(modelpath)
# 2. 自定义handler
import torch
import torchaudio
from transformers import AutoProcessor, AutoModelForCTC
import io
class Wav2VecHandler(object):
def __init__(self):
self._context = None
self.initialized = False
self.model = None
self.processor = None
self.device = None
# Sampling rate for Wav2Vec model must be 16k
self.expected_sampling_rate = 16_000
def initialize(self, context):
"""Initialize properties and load model"""
self._context = context
self.initialized = True
properties = context.system_properties
# See https://pytorch.org/serve/custom_service.html#handling-model-execution-on-multiple-gpus
self.device = torch.device("cuda:" + str(properties.get("gpu_id")) if torch.cuda.is_available() else "cpu")
model_dir = properties.get("model_dir")
self.processor = AutoProcessor.from_pretrained(model_dir)
self.model = AutoModelForCTC.from_pretrained(model_dir)
def handle(self, data, context):
"""Transform input to tensor, resample, run model and return transcribed text."""
input = data[0].get("data")
if input is None:
input = data[0].get("body")
# torchaudio.load accepts file like object, here `input` is bytes
model_input, sample_rate = torchaudio.load(io.BytesIO(input), format="WAV")
# Ensure sampling rate is the same as the trained model
if sample_rate != self.expected_sampling_rate:
model_input = torchaudio.functional.resample(model_input, sample_rate, self.expected_sampling_rate)
model_input = self.processor(model_input, sampling_rate = self.expected_sampling_rate, return_tensors="pt").input_values[0]
logits = self.model(model_input)[0]
pred_ids = torch.argmax(logits, axis=-1)[0]
output = self.processor.decode(pred_ids)
return [output]
2.2 打包模型和启动模型api服务
- 可以直接在linux环境的terminal进行如下相关操作(打包模型、启动模型的api服务、
curl
命令发送http post请求,请求模型服务API) curl
命令发送http post请求,请求模型服务API,如果遇到报错java.lang.NoSuchMethodError: java.nio.file.Files.readString(Ljava/nio/file/Path;)Ljava/lang/String;
则应该是JRE没有安装或者需要升级:sudo apt install default-jre
即可。curl
那坨后正常会返回I HAD THAT CURIOSITY BESIDE ME AT THIS MOMENT%
,测试数据是一段简单的sample.wav
语音文件- Waveform Audio File Format(WAVE,又或者是因为WAV后缀而被大众所知的),它采用RIFF(Resource Interchange File Format)文件格式结构。通常用来保存PCM格式的原始音频数据,所以通常被称为无损音频
# 打包部署模型文件, 把model部署到torchserve
torch-model-archiver --model-name Wav2Vec2 --version 1.0 --serialized-file model/pytorch_model.bin --handler ./handler.py --extra-files "model/config.json,model/special_tokens_map.json,model/tokenizer_config.json,model/vocab.json,model/preprocessor_config.json" -f
mv Wav2Vec2.mar model_store
# 启动model服务, 加载前面打包的model, 并以grpc和http接口向外提供推理服务
torchserve --start --model-store model_store --models Wav2Vec2=Wav2Vec2.mar --ncs
# Once the server is running, let's try it with:
curl -X POST http://127.0.0.1:8080/predictions/Wav2Vec2 --data-binary '@./sample.wav' -H "Content-Type: audio/basic"
# 暂停torchserve serving
torchserve --stop
2.3 相关参数记录
torch-model-archiver:用来打包模型
- model-name: 设定部署的模型名称
- version: 设定部署的模型版本
- model-file: 定义模型结构的python文件
- serialized-file: 设定训练模型保存的pth文件
- export-path: 设定打包好的模型保存路径
- extra-files: 设定额外的文件,如label跟id映射的定义文件等,用于一并打包到模型压缩包中
- handler: 为一个处理器,用来指定模型推理预测前后的数据的处理问题;如 nlp模型中的文本分词和转换为id的步骤;以及分类问题中,模型预测结果映射为具体的label等数据处理功能
torch-model-archiver:用来打包模型
usage: torch-model-archiver [-h] --model-name MODEL_NAME
[--serialized-file SERIALIZED_FILE]
[--model-file MODEL_FILE] --handler HANDLER
[--extra-files EXTRA_FILES]
[--runtime {python,python2,python3}]
[--export-path EXPORT_PATH]
[--archive-format {tgz,no-archive,default}] [-f]
-v VERSION [-r REQUIREMENTS_FILE]
torchserve:该组件用来加载前面打包的模型,并以grpc和http等接口往外提供推理服务
- start 和 stop: 即推理服务的启动和停止;
- model-store: 打包模型存储的路径;
- models: 设定模型名称和模型文件名,如:MODEL_NAME=MODEL_PATH2 格式;
- no-config-snapshots: 即 --ncs,用来设置防止服务器存储配置快照文件;
Reference
[1] https://github.com/pytorch/serve
[2] Torch Model archiver for TorchServe
[3] https://github.com/pytorch/serve/tree/master/examples/speech2text_wav2vec2
[4] https://huggingface.co/docs/transformers/model_doc/wav2vec2
[5] https://github.com/pytorch/serve/tree/master/model-archiver
[6] pytorch 模型部署.nlper
[7] cURL - 学习/实践