目录
💥1 概述
📚2 运行结果
🎉3 参考文献
👨💻4 Matlab代码
💥1 概述
本代码基于无线传感器网络,在两个节点(源节点和目标节点)之间找到最短路径,并开始发送数据,直到路由中涉及的一个节点死亡。一旦一个节点死亡,它就会搜索另一条路径并重新开始发送,直到参与路由的节点因没有能量等原因死亡,直到网络在源节点和目标节点之间不再有连接。
📚2 运行结果
主函数部分代码:
clear all close all clc %% GPU config - if want to run some code block into GPU. (NOT FULLY IMPLEMENTED) %gpu = gpuDevice; %gpu(1); %% Main configuration values for this simulation dataset.nodeNo = 50; %Number of nodes dataset.nodePosition(1,:) = [1 50 50]; %(Sender node fixed position) dataset.nodePosition(2,:) = [2 900 900]; %(Receiver node fixed position) dataset.NeighborsNo = 5; dataset.range = 250; %Tolerance distance to became neighbor of one node (Euclidean distance based) dataset.atenuationFactor = 1.8; %Atenuation factor in freespace - ranges from 1.8 to 4 due environment dataset.minEnergy = 80; % Mw - Miliwatts (70% energy) dataset.maxEnergy = 100; % Mw - Miliwatts (Full energy (100%) - 1 mAh charge capacity within 1 Volt energy) dataset.energyconsumptionperCicle = 0.35; dataset.energyrecoveryperCicle = 0.2; dataset.energyfactor = 0.001; STenergy=10000; packet=0; iterationcounter=1; % Node position sortition for a = 3 : dataset.nodeNo dataset.nodeId = a; garbage.x = randi([1 900]); %Xpos sortition garbage.y = randi([1 900]); %Ypos sortition dataset.nodePosition(a,:) = [dataset.nodeId garbage.x garbage.y]; %NodeID, X and Y position into nodePosition table end % Euclidean Distance calc from one node to all others for i = 1 : dataset.nodeNo for j = 1: dataset.nodeNo garbage.x1 = dataset.nodePosition(i,2); garbage.x2 = dataset.nodePosition(j,2); garbage.y1 = dataset.nodePosition(i,3); garbage.y2 = dataset.nodePosition(j,3); dataset.euclidiana(i,j) = sqrt( (garbage.x1 - garbage.x2) ^2 + (garbage.y1 - garbage.y2)^2 ); end end % Edges matrix definition due "range" variable value dataset.weights = lt(dataset.euclidiana,dataset.range); % Graph construction G=graph(dataset.weights,'omitselfloops'); %Graph creation based on adjacency matrix (Edges matrix) built above % Euclidean distance extraction for all existente end-to-end formed by % "distance tolerance" (range variable value) for a = 1 : height(G.Edges) garbage.s = G.Edges.EndNodes(a,1); garbage.t = G.Edges.EndNodes(a,2); garbage.Z(a,:) = dataset.euclidiana(garbage.s,garbage.t); end G.Edges.Euclidiana = garbage.Z(:,1); %Initial energy sortition (from 70% to 100% - minEnergy and maxEnergy variable valeu) [dataset.nodePosition(:,4)] = dataset.maxEnergy -(dataset.maxEnergy-dataset.minEnergy)*rand(dataset.nodeNo,1); dataset.nodePosition(1:2,4)=STenergy; %All "G" (Graph object) based nodes degree to use as "node processing %status overload" (more connections, busier!) for a = 1: length(dataset.nodePosition(:,1)) dataset.nodePosition(a,5) = degree(G,dataset.nodePosition(a,1)); end % Pathloss calc of each Edges based in a freespace (1.8 factor) [G.Edges.Pathloss] = (10*dataset.atenuationFactor)*log10(G.Edges.Euclidiana); %End points coordinates and energy migration to G object for a = 1 : height(G.Edges) garbage.Sourcenode = G.Edges.EndNodes(a,1); garbage.Targetnode = G.Edges.EndNodes(a,2); G.Edges.SourcenodeXpos(a) = dataset.nodePosition(garbage.Sourcenode,2); G.Edges.SourcenodeYpos(a) = dataset.nodePosition(garbage.Sourcenode,3); G.Edges.TargetnodeXpos(a) = dataset.nodePosition(garbage.Targetnode,2); G.Edges.TargetnodeYpos(a) = dataset.nodePosition(garbage.Targetnode,3); G.Edges.ActiveEdge(a) = 1; end
🎉3 参考文献
[1]陆政. 基于改进蚁群算法的WSN路由研究[D].安徽理工大学,2018.
部分理论引用网络文献,若有侵权联系博主删除。