ChatGPT在智能客服产品落地探讨

news2025/1/11 3:51:45

AI语言模型中的ChatGPT近期在互联网平台上引起了广泛的讨论。那么,如果想将这个大型语言模型应用在智能客服产品中,或者将其在ToB SaaS应用软件领域落地,应该采用哪种构建策略?

现在ChatGPT这个大型语言模型已经在各种平台获得了广泛的关注。那么,如果在ToB SaaS应用软件领域中想要将LLM大语言模型应用于智能客服产品中,应该如何实现呢?

首先,我们需要解决一个问题:在智能客服领域,是否值得使用LLM大语言模型进行智能化产品改造?
在这里插入图片描述

让我们先综合考虑一下智能客服产品的几个典型特征:

人力密集:

智能客服是高度依赖人工操作的系统,需要解放生产力,提高效率。

数据密集:

智能客服产品能够沉淀大量过程性数据,例如会话信息、通话记录、录音和操作日志。这种数据能够为人工智能应用提供基础。

流程可定义:

这类产品往往可以通过业务流程抽象来实现,例如IVR语音交互、外呼任务和工单流转等。

有智能化应用基础:

智能客服早已成为人工智能技术的先锋之一,例如文本机器人、语音机器人和智能质检等应用已经非常成熟。客户和用户对此也已经接受并习惯。

综上所述,如果某个行业拥有相对落后的生产工具、标准的生产流程、大量未充分处理的数据且不排斥人工智能技术,那么这个行业无疑是值得LLM大语言模型落地生根的沃土。

如果值得做,那么如何做?

虽然LLM大语言模型在智能客服产品中的应用前途广阔,但现阶段看来,其应用仍处于不成熟的阶段。

这就是一个见仁见智的问题了,大家的产品架构不同,目标客群不同、业务规模不同、主打产品各异。

我们可以假设,已经有了一套得到验证,稳定运营的成熟产品,不希望引入LLM带来现有产品的巨大变化,进而影响客户体验。如何搞?

提倡拥抱变化,嘴上鼓吹AGI通用人工智能带来行业巨变,这些都没问题,真要不破不立,付出真金白银的代价来决策,去执行,还是一个很难抉择的命题。

1、架构设计问题

考虑我们的产品架构是否能够支持LLM大语言模型的应用。目前我们的主打产品架构由于历史原因显得陈旧,模块化解耦不完善,性能瓶颈难以解决。虽然我们有很多生产客户,但这也使得我们难以轻易地改动架构。在这种情况下,如果将ChatGPT整合到我们的架构中,将会带来更多的沉重压力。

因此,我们需要先确定我们的下一步行动是优化当前架构还是探索新的LLM应用方案。这就好比对待老房子改造,我们需要先施工打好基础,或者简单装修打造软装。如果历史包袱较重,我们也可以另起炉灶,组建一支精锐团队进行探索。这也可以看作是给原有池塘投入一只鲶鱼。

2、工具设计问题

设计顶层应用之前,我们需要先梳理一下我们需要的工具,例如AI引擎管理、数据建模工具、意图管理、标签标注和管理、流程生成工具、业务构建工具等等。

引入ChatGPT的能力,相对于以前智能客服产品所使用的自然语言处理、语义理解、意图识别、关键字和正则处理等方式,带来了颠覆性的改变。借助其能力,我们可以使用上下文关联、逻辑链提示处理等方式,摆脱以前的手把手定义流程、字词句填槽的旧模式,从而实现极大的改进。

如果以前构建复杂的AI应用需要半编程化的方式,那么使用ChatGPT就更像是RPG游戏编程工具,通过场景搭建、角色扮演、提示格式化、逻辑化等方式来构建应用,并辅以人工反馈监督。

这种方式是可行的。如果我们做得足够好用,我们甚至可以邀请用户参与“游戏”开发。

此外,很多工具本身也可以通过借助ChatGPT进行智能化改造,以更高效、智能的方式来处理数据、生成数据。例如,我们可以通过自动训练和标注、知识库的自动化扩充来代替语料手工标注,代替传统问答对的低效人力处理,并给出标准问题,自动扩展相似问题等等。

3、应用设计问题

最后让我们讨论一下智能客服应用的设计,这个层面是用户能够感知到的界面和内容。

为了更好地体现ChatGPT的优势能力,我们可以以智能客服的典型场景为例,探讨其所能带来的富有创意的改变。

1)增强型对话能力

ChatGPT无疑带来了非常强大的对话能力,我们十分期待并开始思考它加入智能客服对话中的效果。

然而,在智能客服产品领域中,对话通常是限定于特定业务领域和任务驱动的需求。我们的客户并不希望访客进来只是为了寻找一个超级智能、善解人意、会写会画的陪聊机器人。对话内容必须在企业业务范畴内收敛,服务于客服和营销场景,解决和处理问题,不要浪费宝贵的资源。

直接将ChatGPT引入客服领域而不加控制,就好比你回家发现扫地机器人不工作,而隔壁的智能吸尘器却会和你侃侃而谈,你会感到很失望!

因此,构建增强型对话能力的过程中,我们一方面可以借助ChatGPT简化对话流程的设计。以前需要设置无数个意图和上下文才能实现的方式,现在可以使用开箱即用的自然语言对话获取和格式化提示,完成限定任务并收集访客数据和意向。另一方面,我们可以通过私有化训练和公共文本数据的结合,为访客提供不僵化、更优质的回答体验。

将ChatGPT与传统的文本和语音机器人能力结合起来,将为智能客服机器人服务能力带来质的飞跃。

2)智能质检

虽然传统智能质检已经非常成熟,但是通过结合ChatGPT的预训练能力和业务规则定义,可以实现更智能的质检结果输出,而无需复杂的设置。

我们可以将一定数量的优质录音和文本投入模型中,并告知ChatGPT哪些因素可以提高质检分数,从而让模型自动判断生产数据的质量。接着,我们可以通过手动质检来进行对齐和调优,让ChatGPT不断学习和改进。

3)智能化辅助

同样地,我们可以通过提供优质的数据样本、定义正确的流程和加分因子,不断地让ChatGPT在数据的滋养下,为座席提供更好的智能辅助功能。虽然原有的辅助功能框架可以保留,但是在内部,它将成为一个不断进化、自动学习的“业务助理”。

4)内训机器人

基于智能质检和智能辅助的基本能力,针对企业内部培训场景,我们可以利用现有数据样本,更自动化地生成一个内训"教官"。业务管理人员可以针对不同的岗前培训、业务流程、服务过程等设置不同的内训主题,让内训机器人在训练过程中获得足够的标准语料,从而指导座席进行自我训练。这种方案对于注重学习能力和管理能力的运营型客户具有很强的吸引力。

5)智能填单类

在智能客服应用中,需要手动输入大量表单,如客户资料、跟进记录和服务工单。目前,有一些CRM产品已经尝试使用ChatGPT进行智能填单的实验应用。以往的实现方式需要进行复杂的工程化设计,实时匹配会话文本,进行词性分析、语义分析和关键字查找等操作,但是这些方法的表现经常不尽如人意。随着LLM大语言模型的出现,我们可以期待它的超强能力可以有效提升这类产品的实用性。

6)从帮助中心到座席助理

全功能的智能客服产品是一个非常复杂的产品,拥有众多功能和高上手难度。

许多设计需要操作者进行复杂的操作、跳转、配置和调整。以前的帮助方式通常是简单的页面提示或者是像维基一样庞大的在线帮助页面,对用户来说不够友好,对开发者来说也有沉重的更新和维护负担。

但是,使用智能助理模式的在线帮助,不同角色的用户可以通过简单的对话式体验实时获得帮助,甚至进行功能性的配置和要求,智能助理可以精准理解用户的对话,直接进行配置和修改。

例如,系统管理员唤起智能配置助理:

“小M小M,请帮我查找近半个月名字叫做***的客户的所有访问和对话记录。”

对于小M的能力来说,这是小菜一碟。

“小M小M,我需要设置一个清明节的IVR语音导航,所有清明节时间呼入的电话都要播放这样一句话:***。”

这个需求有一定的风险,出于谨慎的目的,小C需要反复确认一些关键配置要素,以确保没有误操作。

7) AIGC知识库

智能客服产品中,最需要内容生产能力的地方,莫过于知识库。

产品必备的知识库通常分几类:内部知识库、机器人知识库和外部知识库。

  • 内部知识库

对于内部知识库,这是提供给座席使用者,实时定位查询使用的知识库。由于企业的业务变化频繁,知识库的调整需要及时到位。一般需要专人进行上传、编辑、整理,这是一个非常耗费工作量的事情。引入ChatGPT,可以协助高效智能的归类和自动生成知识库类目、明细。如果增加对外部数据源的引用,知识库还可以自动关联,减少知识库同步的操作。使用者在应用中,可以给与知识点反馈,帮助知识库进行权重自动调节。

机器人知识库是文本和语音机器人能够回答访客问题的核心所在。机器人知识库的有效内容对于机器人的表现至关重要。对于未知问题的整理,需要智能客服使用者大量投入工作量。借助用户反馈对未知问题进行自动整理和关联,能节省很多知识库维护者的工作。同时,通过多机器人组合的方式,在一通会话中接力棒一般服务于客户的不同场景,ChatGPT专属机器人也可以在特定的场合发挥能力,并逐步替代一些以往模式僵化的问答型机器人。

  • 外部知识库

外部知识库需要整合在智能客服产品中,将已整理的知识内容转化为输出产物,更方便生成知识文章、图片、甚至音视频。基于ChatGPT的多模态的AIGC能力,可以快速生成一个个性化的知识空间。

  • 数据预测类应用

数据预测类应用是基于对智能客服数据的预测分析。建设数据预测类产品可能需要很重的CDP数据平台建设,CEM客户体验管理等方式,但如果ChatGPT可以更高效精准的进行销售意向,行为,成交概率的预测,对利润中心导向的智能客服产品,将具有很大价值。

4、商业化前景

以上内容充满了构想和想象,但如果要真正将这些想法付诸实践,我们必须同时考虑以下几个问题:

  • 投入产出比:我们需要思考成本与效益之间的平衡,确保投入产生的价值能够超过成本。
  • 可衡量的客户认可和价值体现:我们需要衡量客户对产品的认可程度,并确保产品能够为客户带来实际的价值和好处。
  • 通用性与行业性:我们需要考虑产品在不同行业和场景中的适用性,以及如何保持产品的通用性和灵活性。
  • 数据风险和监管安全:我们需要确保产品能够保护客户数据的隐私和安全,同时遵守相关的法律和规定。

这些问题只是冰山一角,我们需要深入研究和思考,才能确保产品能够真正落地,并为客户带来价值。

最后,我们期待与大家进行深入交流,分享更多的想法和经验,共同探索ChatGPT等技术的应用和发展。同时,我们也期待ChatGPT和文心一言能够为我们解答更多的问题和提供更多的帮助。

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/464495.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

初学Python来用它制作一个简单的界面

前言 很多刚开始学习python的宝子,就想着自己开始琢磨一些界面,但是吧很多都是有点难度的,自己又琢磨不透,只能把代码复制粘贴运行 现在就带你们来了解一个制作简单界面的代码 ttkbootstrap 是一个基于 tkinter 的界面美化库&am…

CMake自动按目录结构编译Protobuf代码

在使用CMake构建C项目时,如果有使用Protobuf,CMake提供了一个FindProtobuf.cmake模块来处理PB,其使用方法如下: find_package(Protobuf REQUIRED) protobuf_generate_cpp(GENERATED_SRC GENERATED_HEADER "pb/t.proto"…

rancher Prometheus添加exporter监控

mysql 用docker启动exporter docker run -d \-p 9104:9104 \--network my-mysql-network \-e DATA_SOURCE_NAME"mysqlexporter:mysqlexporter(192.168.147.46:3306)/" \prom/mysqld-exporter给集群中的prometheus添加该exporter的数据 First, you will need to c…

力劲塑机:用CRM“塑造”数字化能力

你知道吗?从手机到电脑,从暖气到扶梯,从家用电器到汽车、摩托车,从眼镜、手表到拉链、纽扣,这些物品的生产过程都离不开压铸和注塑工艺。如果说压铸和注塑这个几百亿的产业带动了几万亿的市场,一点也不夸张…

Vue3+axios+Mock.js实现登录功能

文章目录 前言一、Vue3 Element Plus Mock.js axios实现登录功能1.登录页面配置路由、编写表单内容2.编写表单校验规则3.登录触发表单预验证4.Mock.js模拟登录请求 二、面试题1.前端登录流程2.token是什么? 前言 最近学习了Vue3,这篇文章主要分享一下…

2023年6月DAMA-CDGA/CDGP数据治理认证考试可报名地区公布

2023年4月23日,据DAMA中国官方信息,目前6月DAMA-CDGA/CDGP数据治理认证考试开放报名地区有:北京、上海、广州、深圳、长沙、呼和浩特。目前南京、济南、西安、杭州等地区还在接近开考人数中,打算6月考试的朋友们可以抓紧时间报名啦…

内网远程控制软件哪个好用

市面上远程控制软件很多,但是支持纯内网环境(无外网)的很少。大部分远程控制软件可以在局域网用,但是它的数据流量还是要走软件公司服务器,也就是要走外网,所以在纯内网环境没法使用。那么什么软件支持纯内…

什么是光伏发电AGC/AVC系统及RCL-0923光伏群调群控AGC/AVC装置简介。以及分布式电源光伏可观可测,可调可控方案介绍

什么是光伏发电AGC/AVC系统及RCL-0923光伏群调群控AGC/AVC装置简介。以及分布式电源光伏可观可测,可调可控方案介绍。虚拟电厂光伏电站电压快速控制装置 一:什么是ACG系统 AGC系统是指自动发电控制系统,它通过控制光伏逆变器的出力&#xff0…

c++类 笔记

派生类 #include <iostream> using namespace std; class Box{private://类私有&#xff0c;只有成员可以调用 也就是说你不可以通过box1.a来调用 ,这些变量其实你默认不用写private 这个变量&#xff0c;只要放在最上面他默认就是 私有int a1;protected://protected&am…

博途1200/1500PLC工艺PID编程应用(SCL语言)

博途工艺PID的详细解读可以查看下面的博客文章,这里不再赘述 博途PLC 1200/1500PLC 工艺对象PID PID_Compact详细解读_RXXW_Dor的博客-CSDN博客这篇博文我们详细解读博途PLC自带的PID功能块PID_Compact,大部分工业闭环调节过程,我们采用系统自带的PID功能块基本都能胜任,一…

Linux的进程控制

进程创建后&#xff0c;需要对其进行合理管理&#xff0c;光靠OS 是无法满足我们的需求的&#xff0c;此时可以运用进程控制相关知识&#xff0c;对进程进行手动管理&#xff0c;如创建进程、终止进程、等待 进程等&#xff0c;其中等待进程可以有效解决僵尸进程问题。 1、进程…

日撸 Java 三百行day38

文章目录 说明day381.Dijkstra 算法思路分析2.Prim 算法思路分析3.对比4.代码 说明 闵老师的文章链接&#xff1a; 日撸 Java 三百行&#xff08;总述&#xff09;_minfanphd的博客-CSDN博客 自己也把手敲的代码放在了github上维护&#xff1a;https://github.com/fulisha-ok/…

java--Lock锁

1.概述 锁是一种工具&#xff0c;用于控制对共享资源的访问 Lock和synchronized&#xff0c;这两个是最常见的锁&#xff0c;它们都可以达到线程安全的目的&#xff0c;但是在使用上和功能上又有较大的不同。 Lock并不是用来代替synchronized的&#xff0c;而是当使用synchroni…

verilog手撕代码3——序列检测和序列发生器

文章目录 前言一、序列检测器1.1 重复序列检测1.1.1 序列缓存对比/移位寄存器法1.1.2 状态机法 1.2 非重复序列检测 二、序列发生器2.1 移位寄存器法2.2 反馈法2.3 计数器法 前言 2023.4.25 2023.4.26 学习打卡&#xff0c;天气转晴 一、序列检测器 1.1 重复序列检测 1.1.1 …

SpringBoot整合EasyExcel上传下载前后端

SpringBoot整合EasyExcel上传下载前后端 需求&#xff0c;在项目启动时加载表格里的数据初始化&#xff0c;前端可以上传全部部门的表格数据&#xff0c;后台根据部门名字解析归类数据和根据表格的部门下载部门数据1.后端1.1创建一个SpringBoot项目&#xff0c;引入依赖1.2 在r…

推荐几个可以免费体验GPT-4的网站

想要体验GPT-4除了每月花20美刀还有别的办法吗&#xff1f;&#xff08;甚至现在有钱都花不了&#xff09; 问就是有的&#xff0c;我搜罗了一些可以免费使用GPT-4的网站&#xff08;注意需要魔法&#xff09;&#xff0c;体验之后觉得还行&#xff0c;推荐给大家。 有别的大…

JavaWeb学习笔记

文章目录 一. HTML二. CSS三. JavaScript1. 引入2.语法/输出语句3. 变量/数据类型4. 运算符5. 流程控制语句6. 函数7. 对象8. 事件监听 四. Servlet1.执行流程2. 生命周期3. 常用方法4. 体系结构5. 配置Servlet 五. JSP1. 简介2. JSP原理3.脚本4.JSP缺点5. EL表达式6. JSTL标签…

AI+HPC?人工智能高性能计算方向就业新路子

刚刚过去的3月&#xff0c;GPT-4刷屏了。吃瓜群众一边津津乐道&#xff0c;一边瑟瑟发抖。随后国产大模型紧随其后&#xff0c;百度的“文心一言”、阿里的“通义千问”、复旦大学的“MOSS”、商汤的“商量”竞赛般的亮家伙&#xff0c;有点全民练模型&#xff0c;人人GPT的味道…

【最新】Jetson Agx Xavier烧录环境到TensorRT加速(高集成,快速简单有效)

一.下载烧录好的基础镜像 1. 基础环境 当前镜像包是ubuntu18.08,镜像。镜像包已安装jetpack 4.6,python3.6 &#xff0c;torch1.7, opencv, tensorrt等&#xff0c;运行模型的基本环境都已搭建。jetpack 是4.6 对应L4T是32.6.1。如下图&#xff1a; (1).下载当前文件包&…

OSCP-Escape(gif绕过)

目录 扫描 WEB 扫描 sudo nmap 192.168.233.113 -p- -sS -sVPORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 7.6p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0) 80/tcp open http Apache httpd 2.4.29 ((Ubuntu)) 8080/tcp open http Apache…