【操作系统】CPU 缓存一致性、MESI 协议

news2025/1/6 20:24:37

【操作系统】CPU 缓存一致性、MESI 协议

参考资料:

CPU缓存一致性协议(MESI)

【JUC】Java并发机制的底层实现原理

CPU 缓存一致性

文章目录

  • 【操作系统】CPU 缓存一致性、MESI 协议
    • CPU Cache 的数据写入
      • 写直达
      • 写回
    • 缓存一致性问题
    • 总线嗅探
    • MESI 协议
    • 总结

CPU Cache 的数据写入

随着时间的推移,CPU 和内存的访问性能相差越来越大,于是就在 CPU 内部嵌入了 CPU Cache(高速缓存),CPU Cache 离 CPU 核心相当近,因此它的访问速度是很快的,于是它充当了 CPU 与内存之间的缓存角色。

CPU Cache 通常分为三级缓存:L1 Cache、L2 Cache、L3 Cache,级别越低的离 CPU 核心越近,访问速度也快,但是存储容量相对就会越小。其中,在多核心的 CPU 里,每个核心都有各自的 L1/L2 Cache,而 L3 Cache 是所有核心共享使用的。

img

我们先简单了解下 CPU Cache 的结构,CPU Cache 是由很多个 Cache Line 组成的,CPU Line 是 CPU 从内存读取数据的基本单位,而 CPU Line 是由各种标志(Tag)+ 数据块(Data Block)组成,你可以在下图清晰的看到:

img

我们当然期望 CPU 读取数据的时候,都是尽可能地从 CPU Cache 中读取,而不是每一次都要从内存中获取数据。所以,身为程序员,我们要尽可能写出缓存命中率高的代码,这样就有效提高程序的性能。

事实上,数据不光是只有读操作,还有写操作,那么如果数据写入 Cache 之后,内存与 Cache 相对应的数据将会不同,这种情况下 Cache 和内存数据都不一致了,于是我们肯定是要把 Cache 中的数据同步到内存里的。

问题来了,那在什么时机才把 Cache 中的数据写回到内存呢?为了应对这个问题,下面介绍两种针对写入数据的方法:

  • 写直达(Write Through
  • 写回(Write Back

写直达

保持内存与 Cache 一致性最简单的方式是,把数据同时写入内存和 Cache 中,这种方法称为写直达(*Write Through*)

img

在这个方法里,写入前会先判断数据是否已经在 CPU Cache 里面了:

  • 如果数据已经在 Cache 里面,先将数据更新到 Cache 里面,再写入到内存里面;
  • 如果数据没有在 Cache 里面,就直接把数据更新到内存里面。

写直达法很直观,也很简单,但是问题明显,无论数据在不在 Cache 里面,每次写操作都会写回到内存,这样写操作将会花费大量的时间,无疑性能会受到很大的影响。

写回

既然写直达由于每次写操作都会把数据写回到内存,而导致影响性能,于是为了要减少数据写回内存的频率,就出现了写回(*Write Back*)的方法

在写回机制中,当发生写操作时,新的数据仅仅被写入 Cache Block 里,只有当修改过的 Cache Block「被替换」时才需要写到内存中,减少了数据写回内存的频率,这样便可以提高系统的性能。

img

那具体如何做到的呢?下面来详细说一下:

  • 如果当发生写操作时,数据已经在 CPU Cache 里的话,则把数据更新到 CPU Cache 里,同时标记 CPU Cache 里的这个 Cache Block 为脏(Dirty)的,这个脏的标记代表这个时候,我们 CPU Cache 里面的这个 Cache Block 的数据和内存是不一致的,这种情况是不用把数据写到内存里的;
  • 如果当发生写操作时,数据所对应的 Cache Block 里存放的是「别的内存地址的数据」的话,就要检查这个 Cache Block 里的数据有没有被标记为脏的:
    • 如果是脏的话,我们就要把这个 Cache Block 里的数据写回到内存,然后再把当前要写入的数据,先从内存读入到 Cache Block 里(注意,这一步不是没用的,具体为什么要这一步,可以看这个「回答 (opens new window)」),然后再把当前要写入的数据写入到 Cache Block,最后也把它标记为脏的;
    • 如果不是脏的话,把当前要写入的数据先从内存读入到 Cache Block 里,接着将数据写入到这个 Cache Block 里,然后再把这个 Cache Block 标记为脏的就好了。

可以发现写回这个方法,在把数据写入到 Cache 的时候,只有在缓存不命中,同时数据对应的 Cache 中的 Cache Block 为脏标记的情况下,才会将数据写到内存中,而在缓存命中的情况下,则在写入后 Cache 后,只需把该数据对应的 Cache Block 标记为脏即可,而不用写到内存里。

这样的好处是,如果我们大量的操作都能够命中缓存,那么大部分时间里 CPU 都不需要读写内存,自然性能相比写直达会高很多。

为什么缓存没命中时,还要定位 Cache Block?这是因为此时是要判断数据即将写入到 cache block 里的位置,是否被「其他数据」占用了此位置,如果这个「其他数据」是脏数据,那么就要帮忙把它写回到内存。

CPU 缓存与内存使用「写回」机制的流程图如下,左半部分就是读操作的流程,右半部分就是写操作的流程,也就是我们上面讲的内容。

img

缓存一致性问题

现在 CPU 都是多核的,由于 L1/L2 Cache 是多个核心各自独有的,那么会带来多核心的缓存一致性(*Cache Coherence*) 的问题,如果不能保证缓存一致性的问题,就可能造成结果错误。

那缓存一致性的问题具体是怎么发生的呢?我们以一个含有两个核心的 CPU 作为例子看一看。

假设 A 号核心和 B 号核心同时运行两个线程,都操作共同的变量 i(初始值为 0 )。

img

这时如果 A 号核心执行了 i++ 语句的时候,为了考虑性能,使用了我们前面所说的写回策略,先把值为 1 的执行结果写入到 L1/L2 Cache 中,然后把 L1/L2 Cache 中对应的 Block 标记为脏的,这个时候数据其实没有被同步到内存中的,因为写回策略,只有在 A 号核心中的这个 Cache Block 要被替换的时候,数据才会写入到内存里。

如果这时旁边的 B 号核心尝试从内存读取 i 变量的值,则读到的将会是错误的值,因为刚才 A 号核心更新 i 值还没写入到内存中,内存中的值还依然是 0。这个就是所谓的缓存一致性问题,A 号核心和 B 号核心的缓存,在这个时候是不一致,从而会导致执行结果的错误。

img

那么,要解决这一问题,就需要一种机制,来同步两个不同核心里面的缓存数据。要实现的这个机制的话,要保证做到下面这 2 点:

  • 第一点,某个 CPU 核心里的 Cache 数据更新时,必须要传播到其他核心的 Cache,这个称为写传播(*Write Propagation*)
  • 第二点,某个 CPU 核心里对数据的操作顺序,必须在其他核心看起来顺序是一样的,这个称为事务的串行化(*Transaction Serialization*)

第一点写传播很容易就理解,当某个核心在 Cache 更新了数据,就需要同步到其他核心的 Cache 里。而对于第二点事务的串行化,我们举个例子来理解它。

假设我们有一个含有 4 个核心的 CPU,这 4 个核心都操作共同的变量 i(初始值为 0 )。A 号核心先把 i 值变为 100,而此时同一时间,B 号核心先把 i 值变为 200,这里两个修改,都会「传播」到 C 和 D 号核心。

img

那么问题就来了,C 号核心先收到了 A 号核心更新数据的事件,再收到 B 号核心更新数据的事件,因此 C 号核心看到的变量 i 是先变成 100,后变成 200。

而如果 D 号核心收到的事件是反过来的,则 D 号核心看到的是变量 i 先变成 200,再变成 100,虽然是做到了写传播,但是各个 Cache 里面的数据还是不一致的。

所以,我们要保证 C 号核心和 D 号核心都能看到相同顺序的数据变化,比如变量 i 都是先变成 100,再变成 200,这样的过程就是事务的串行化。

要实现事务串行化,要做到 2 点:

  • CPU 核心对于 Cache 中数据的操作,需要同步给其他 CPU 核心;
  • 要引入「锁」的概念,如果两个 CPU 核心里有相同数据的 Cache,那么对于这个 Cache 数据的更新,只有拿到了「锁」,才能进行对应的数据更新。

那接下来我们看看,写传播和事务串行化具体是用什么技术实现的。

总线嗅探

写传播的原则就是当某个 CPU 核心更新了 Cache 中的数据,要把该事件广播通知到其他核心。最常见实现的方式是总线嗅探(*Bus Snooping*)

我还是以前面的 i 变量例子来说明总线嗅探的工作机制,当 A 号 CPU 核心修改了 L1 Cache 中 i 变量的值,通过总线把这个事件广播通知给其他所有的核心,然后每个 CPU 核心都会监听总线上的广播事件,并检查是否有相同的数据在自己的 L1 Cache 里面,如果 B 号 CPU 核心的 L1 Cache 中有该数据,那么也需要把该数据更新到自己的 L1 Cache。

可以发现,总线嗅探方法很简单, CPU 需要每时每刻监听总线上的一切活动,但是不管别的核心的 Cache 是否缓存相同的数据,都需要发出一个广播事件,这无疑会加重总线的负载。

另外,总线嗅探只是保证了某个 CPU 核心的 Cache 更新数据这个事件能被其他 CPU 核心知道,但是并不能保证事务串行化。

于是,有一个协议基于总线嗅探机制实现了事务串行化,也用状态机机制降低了总线带宽压力,这个协议就是 MESI 协议,这个协议就做到了 CPU 缓存一致性。

MESI 协议

MESI 协议其实是 4 个状态单词的开头字母缩写,分别是:

  • Modified,已修改
  • Exclusive,独占
  • Shared,共享
  • Invalidated,已失效

这四个状态来标记 Cache Line 四个不同的状态。

「已修改」状态就是我们前面提到的脏标记,代表该 Cache Block 上的数据已经被更新过,但是还没有写到内存里。而「已失效」状态,表示的是这个 Cache Block 里的数据已经失效了,不可以读取该状态的数据。

「独占」和「共享」状态都代表 Cache Block 里的数据是干净的,也就是说,这个时候 Cache Block 里的数据和内存里面的数据是一致性的。

「独占」和「共享」的差别在于,独占状态的时候,数据只存储在一个 CPU 核心的 Cache 里,而其他 CPU 核心的 Cache 没有该数据。这个时候,如果要向独占的 Cache 写数据,就可以直接自由地写入,而不需要通知其他 CPU 核心,因为只有你这有这个数据,就不存在缓存一致性的问题了,于是就可以随便操作该数据。

另外,在「独占」状态下的数据,如果有其他核心从内存读取了相同的数据到各自的 Cache ,那么这个时候,独占状态下的数据就会变成共享状态。

那么,「共享」状态代表着相同的数据在多个 CPU 核心的 Cache 里都有,所以当我们要更新 Cache 里面的数据的时候,不能直接修改,而是要先向所有的其他 CPU 核心广播一个请求,要求先把其他核心的 Cache 中对应的 Cache Line 标记为「无效」状态,然后再更新当前 Cache 里面的数据。

我们举个具体的例子来看看这四个状态的转换:

  1. 当 A 号 CPU 核心从内存读取变量 i 的值,数据被缓存在 A 号 CPU 核心自己的 Cache 里面,此时其他 CPU 核心的 Cache 没有缓存该数据,于是标记 Cache Line 状态为「独占」,此时其 Cache 中的数据与内存是一致的;
  2. 然后 B 号 CPU 核心也从内存读取了变量 i 的值,此时会发送消息给其他 CPU 核心,由于 A 号 CPU 核心已经缓存了该数据,所以会把数据返回给 B 号 CPU 核心。在这个时候, A 和 B 核心缓存了相同的数据,Cache Line 的状态就会变成「共享」,并且其 Cache 中的数据与内存也是一致的;
  3. 当 A 号 CPU 核心要修改 Cache 中 i 变量的值,发现数据对应的 Cache Line 的状态是共享状态,则要向所有的其他 CPU 核心广播一个请求,要求先把其他核心的 Cache 中对应的 Cache Line 标记为「无效」状态,然后 A 号 CPU 核心才更新 Cache 里面的数据,同时标记 Cache Line 为「已修改」状态,此时 Cache 中的数据就与内存不一致了。
  4. 如果 A 号 CPU 核心「继续」修改 Cache 中 i 变量的值,由于此时的 Cache Line 是「已修改」状态,因此不需要给其他 CPU 核心发送消息,直接更新数据即可。
  5. 如果 A 号 CPU 核心的 Cache 里的 i 变量对应的 Cache Line 要被「替换」,发现 Cache Line 状态是「已修改」状态,就会在替换前先把数据同步到内存。

所以,可以发现当 Cache Line 状态是「已修改」或者「独占」状态时,修改更新其数据不需要发送广播给其他 CPU 核心,这在一定程度上减少了总线带宽压力。

事实上,整个 MESI 的状态可以用一个有限状态机来表示它的状态流转。还有一点,对于不同状态触发的事件操作,可能是来自本地 CPU 核心发出的广播事件,也可以是来自其他 CPU 核心通过总线发出的广播事件。下图即是 MESI 协议的状态图:

img

MESI 协议的四种状态之间的流转过程,我汇总成了下面的表格,你可以更详细的看到每个状态转换的原因:

img


总结

CPU 在读写数据的时候,都是在 CPU Cache 读写数据的,原因是 Cache 离 CPU 很近,读写性能相比内存高出很多。对于 Cache 里没有缓存 CPU 所需要读取的数据的这种情况,CPU 则会从内存读取数据,并将数据缓存到 Cache 里面,最后 CPU 再从 Cache 读取数据。

而对于数据的写入,CPU 都会先写入到 Cache 里面,然后再在找个合适的时机写入到内存,那就有「写直达」和「写回」这两种策略来保证 Cache 与内存的数据一致性:

  • 写直达,只要有数据写入,都会直接把数据写入到内存里面,这种方式简单直观,但是性能就会受限于内存的访问速度;
  • 写回,对于已经缓存在 Cache 的数据的写入,只需要更新其数据就可以,不用写入到内存,只有在需要把缓存里面的脏数据交换出去的时候,才把数据同步到内存里,这种方式在缓存命中率高的情况,性能会更好;

当今 CPU 都是多核的,每个核心都有各自独立的 L1/L2 Cache,只有 L3 Cache 是多个核心之间共享的。所以,我们要确保多核缓存是一致性的,否则会出现错误的结果。

要想实现缓存一致性,关键是要满足 2 点:

  • 第一点是写传播,也就是当某个 CPU 核心发生写入操作时,需要把该事件广播通知给其他核心;
  • 第二点是事物的串行化,这个很重要,只有保证了这个,才能保障我们的数据是真正一致的,我们的程序在各个不同的核心上运行的结果也是一致的;

基于总线嗅探机制的 MESI 协议,就满足上面了这两点,因此它是保障缓存一致性的协议。

MESI 协议,是已修改、独占、共享、已失效这四个状态的英文缩写的组合。整个 MSI 状态的变更,则是根据来自本地 CPU 核心的请求,或者来自其他 CPU 核心通过总线传输过来的请求,从而构成一个流动的状态机。另外,对于在「已修改」或者「独占」状态的 Cache Line,修改更新其数据不需要发送广播给其他 CPU 核心。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/461346.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电感知识大全

目录 一、电感的种类 1、共模电感 2、差模电感 3、工字电感 功率电感 4、磁珠 5、变压器 6、R棒电感、棒形电感、差模电感 二、电感符号 三、电感特性 前面在学习电容的时候,为了让大家更形象,更通俗的去理解这个元器件,都是拿水缸去…

IO多路复用——select函数

1.select函数原型和fd_set结构体说明 1.1 select函数原型 ​ 使用 select 这种 IO 多路转接方式需要调用一个同名函数 select,这个函数是跨平台的,Linux、Mac、Windows 都是支持的。程序员通过调用这个函数可以委托内核帮助我们检测若干个文件描述符的…

mybatisPlus·入门·贰

文章目录 1 简单CRUD接口1.1 根据id查询({id传参)1.1.1 接口类直接继承IService1.1.2 controller直接调用方法 1.2 根据ids查询1.3 新增1.3.1 接口类直接继承IService1.3.2 controller直接调用方法 1.4 修改状态(Query传参)1.4.1 …

GPT-4 IDEA神仙插件亲测帮助亿万用户解决痛点!

最近,Intellij IDEA的插件商店推出了一款新的插件——Bito,据说使用了GPT-4和ChatGPT来帮助开发人员编写代码,并且下载量已经达到了65K以上。 这款插件可以将GPT-4和ChatGPT引入IDE来大大提高开发人员的效率。它使用了OpenAI的模型&#xff0…

ESP32设备驱动-BMM150数字地磁传感器驱动

BMM150数字地磁传感器驱动 文章目录 BMM150数字地磁传感器驱动1、BMM150介绍2、硬件准备3、软件准备4、驱动实现1、BMM150介绍 BMM150 是一款低功耗、低噪声的 3 轴数字地磁传感器,用于罗盘应用。 具有 1.56 x 1.56 mm 和 0.60 mm 高度的 12 引脚晶圆级芯片级封装 (WLCSP) 为…

JavaEE 2(4/24)

目录 1.线程 2.前台线程和后台线程 3.run和start的区别 4.线程的终止 5.线程等待 6.获取当前线程的引用 1.线程 创建线程需要继承Thread方法 调用start方法就会生成一个新的线程,调用run方法会在老的线程继续跑 main也是个线程,他是自动调用的.线程休息了先唤醒main和thre…

【文章学习系列之模型】Informer

本章内容 文章概况总体结构重点结构self-attention distilling operation(自注意蒸馏操作)generative style decoder(生成式解码器)ProbSparse self-attention mechanism(概率稀疏自注意机制) 实验结果主要…

双向沟通写作法: 用妙记多 Mojidoc 快速写作的实践

在妙记多 Mojidoc,我们希望能够为用户提供快速开始生产力的工具,为此我们一直在加快完善用户使用中的需求和功能迭代,请查看妙记多更新日志,看看我们产品改进速度。 妙记多 Mojidoc 如何实践双向沟通写作法以及在双向写作的文档中…

自称是资深Android程序员的面试现场,结果被面试官吊打~

1背景 牛哥工作五年了,是一名“资深”程序员(嗯…至少他自己是这么认为的) 牛哥所在的公司已经两年没有涨过工资了(嗯…至少他是两年没涨过了) 牛哥坐不住了,这位“资深”程序员打算去“外面的世界”看看…

〖ChatGPT实践指南 - 零基础扫盲篇④〗- OpenAI API 相关介绍、提示-Prompt 与 完成-Completion

文章目录 ⭐ OpenAI API介绍⭐ 提示-Prompt 与 完成-Completion 介绍 这一章节将为各位小伙伴介绍一下 OpenAI 的 API 相关内容,以及在 ChatGPT 中两个经常被用来比较的名词:“提示-prompt” 与 “完成-completion”。 ⭐ OpenAI API介绍 OpenAI API 概…

Fido无密码认证示例部署运行

文章目录 什么是FIDOwebauthn部署运行访问测试 本文对fido基本概念进行总结说明,并部署运行一个实际的例子,可以直观的体验fido无密码认证。晚上的例子方便后续实现相关功能。 什么是FIDO 常见认证方式的问题 目前流行认证方式普遍存在一些问题 用户名…

Ajax ASP/PHP

文章目录 AJAX ASP/PHP 实例AJAX ASP/PHP 实例实例解析 showHint() 函数AJAX 服务器页面 ASP 和 PHPASP 文件PHP 文件 AJAX ASP/PHP 实例 AJAX 用于创造动态性更强的应用程序。 AJAX ASP/PHP 实例 下面的例子将为您演示当用户在输入框中键入字符时,网页如何与 web…

【打卡-Coggle竞赛学习2023年4月】图像检索与重复图像识别

#### 任务1:图像匹配与检索 图像相似度 图像相似度是用于度量两幅图像之间相似程度的指标。图像相似度可以基于像素级别的相似度或者基于特征匹配的相似度来计算。像素级别的相似度通常是基于两幅图像的像素值来计算的,包括均方误差、结构相似性指数&a…

被遗忘的Java关键字:transient

前言 今天在看项目代码时候,看到了下面这样一行代码,用transient修饰了一个变量,主要作用是做一个全局开关。说实话我是第一次看到这个关键字。激发了我的好奇心,所以就了解一下这是何方神圣。 /*** 全局开关*/public static tran…

Linux第三章

文章目录 前言一、Linux的root用户1.用户和用户组2.查看权限控制信息3.chmod命令4.chown命令 总结 前言 一、Linux的root用户 无论是Windows、MacOS、Linux均采用多用户的管理模式进行权限管理。在Linux系统中,拥有最大权限的账户名为:root(…

QGIS数据可视化学习笔记03——地理解析(地址解析,地理编码......)和数据上图

一、地理解析 百度百科传送门:https://baike.baidu.com/item/%E5%9C%B0%E7%90%86%E7%BC%96%E7%A0%81/2890260 简单来说,就是名称对应QGIS中经纬度等坐标的转换,比如给出北京朝阳公园,你在QGIS中转换为对应的经纬度坐标&#xff0c…

企业网站注册攻略,告别烦恼!

业网站的注册过程可能对于一些初创企业来说比较繁琐,但它是推广企业品牌的重要途径之一。本文将为您介绍企业网站注册的攻略,帮助您更加高效地完成注册过程。 步骤: 1、确定网站类型:在开始注册之前,企业需要确定网站…

ASEMI代理ADI亚德诺ADG5412BRUZ-REEL7车规级芯片

编辑-Z ADG5412BRUZ-REEL7芯片参数: 型号:ADG5412BRUZ-REEL7 开态电阻:9.8Ω 电源断开漏电流:0.05 nA 输入高电压:2V 输入低电压:0.8V 输入电流:0.002μA 数字输入电容:2.5 …

Bean作用域与生命周期

日升时奋斗,日落时自省 目录 1、Bean的作用域问题 1.1、Lombok 1.2、修改Bean对象 2、作用域定义 2.1、Bean的6种作用域 2.1.1、singleton 2.1.2、prototype 2.1.3、request 2.1.4、session 2.1.5、appliction(了解) 2.1.6、webs…

I2C驱动框架介绍以及Linux下sht20驱动开发温湿度传感器获取温湿度

文章目录 一、I2C驱动框架(1)I2C驱动框架介绍(2)I2C总线驱动介绍【1】i2c_adapter结构体【2】i2c_algorithm结构体【3】I2C总线驱动工作介绍 (3)I2C设备驱动介绍【1】i2c_client结构体【2】i2c_driver结构体…