OpenGL入门教程之 纹理

news2024/11/14 19:47:57

引言

 我们已经了解到,我们可以为每个顶点添加颜色来增加图形的细节,从而创建出有趣的图像但是,如果想让图形看起来更真实,我们就必须有足够多的顶点,从而指定足够多的颜色。这将会产生很多额外开销,因为每个模型都会需求更多的顶点,每个顶点又需求一个颜色属性
 艺术家和程序员更喜欢使用纹理(Texture)纹理是一个2D图片(甚至也有1D和3D的纹理),它可以用来添加物体的细节;你可以想象纹理是一张绘有砖块的纸,无缝折叠贴合到你的3D的房子上,这样你的房子看起来就像有砖墙外表了。因为我们可以在一张图片上插入非常多的细节,这样就可以让物体非常精细而不用指定额外的顶点
 除了图像以外,纹理也可以被用来储存大量的数据,这些数据可以发送到着色器上

纹理映射

自注:为顶点指定纹理坐标,这样顶点就可以根据纹理坐标对纹理的像素进行采样,于是顶点就拥有了纹理对应位置的颜色。二图形其他的片段会依据纹理进行相应插值。
 为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分。这样每个顶点就会关联着一个纹理坐标(Texture Coordinate),用来标明该从纹理图像的哪个部分采样(译注:采集片段颜色)之后在图形的其它片段上进行片段插值(Fragment Interpolation)

纹理环绕方式

自注:纹理坐标在x和y轴上,且范围为0到1之间(对于2D纹理图形)。纹理坐标起始于(0,0)为纹理图片左下角,终止于(1,1)为纹理图片的右上角。纹理环绕就是指当纹理坐标超出范围时,采取纹理重复方式去平铺物体的表面。
在这里插入图片描述
使用函数:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,GL_MIRRORED_REPEAT);
float borderColor[] = {1.0f, 1.0f , 0.0f, 1.0f };
glTexParametefv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);

在这里插入图片描述

纹理过滤

自注:当你拥有一张纹理图片时,其实它其中包含很多纹理像素,就是它拥有很多像素点。而我们的纹理坐标是浮点数,我们需要根据纹理坐标去纹理上进行采样获取颜色。
在这里插入图片描述
使用函数:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER , GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_FILTER, GL_LINEAR);

多级渐远纹理
在这里插入图片描述
涉及函数:

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN)FILTER, GL_LINEAR_MIPMAP_LINEAR);

加载纹理

在这里插入图片描述
 加载纹理的代码:

int width, height;
unsigned char* image = SOIL_load_image("container,jpg", &width, &height, 0 ,SOIL_LOAD_RGB);

创建纹理

在这里插入图片描述
在这里插入图片描述
生成纹理的过程:

GLuint texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);
// 为当前绑定的纹理对象色湖之环绕、过滤方式

// 加载并生成纹理
int width, height;
unsigned char* image = SOIL_load_image("container.jpg", &width, &height, 0 ,SOIL_LOAD_RGB);

应用纹理

 后面的这部分我们会使用glDrawElements绘制「你好,三角形」教程最后一部分的矩形。我们需要告知OpenGL如何采样纹理,所以我们必须使用纹理坐标更新顶点数据:

GLfloat vertices[] = {
//     ---- 位置 ----       ---- 颜色 ----     - 纹理坐标 -
     0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f,   // 右上
     0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f,   // 右下
    -0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f,   // 左下
    -0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f    // 左上
};

 新顶点数据的配置:

glVertexAttribPointer(2, 2, GL_FLOAT,GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);

 顶点着色器:

#version 330 core

// 输入为顶点数据中的位置、颜色、纹理坐标
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;
layout (location = 2) in vec2 texCoord;

// 输出为顶点颜色、纹理坐标
out vec3 ourColor;
out vec2 TexCoord;

void main()
{
    gl_Position = vec4(position, 1.0f);
    ourColor = color;
    TexCoord = texCoord;
}

在这里插入图片描述

 片段着色器:

#version 330 core

// 输入为顶点颜色、纹理坐标
in vec3 ourColor;
in vec2 TexCoord;

// 输出为颜色
out vec4 color;

// 采样器
uniform sampler2D ourTexture;

void main()
{
	// 使用texture函数来采样纹理颜色(采样器,纹理坐标)
    color = texture(ourTexture, TexCoord);
}

在这里插入图片描述

glBindTexture(GL_TEXTURE_2D, texture);
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);

完整代码

#version 330 core

// 输入为顶点数据中的位置、颜色、纹理坐标
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;
layout (location = 2) in vec2 texCoord;

// 输出为顶点颜色、纹理坐标
out vec3 ourColor;
out vec2 TexCoord;

void main()
{
    gl_Position = vec4(position, 1.0f);
    ourColor = color;
    TexCoord = texCoord;
}
#version 330 core

// 输入为顶点颜色、纹理坐标
in vec3 ourColor;
in vec2 TexCoord;

// 输出为颜色
out vec4 color;

// 采样器
uniform sampler2D ourTexture;

void main()
{
	// 使用texture函数来采样纹理颜色(采样器,纹理坐标)
    color = texture(ourTexture, TexCoord);
}
#include <iostream>

// GLEW
#define GLEW_STATIC
#include <GL/glew.h>

// GLFW
#include <GLFW/glfw3.h>

// Other Libs
#include "SOIL.h"

// Other includes
#include "Shader.h"


// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);

// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 600;

// The MAIN function, from here we start the application and run the game loop
int main()
{
    // Init GLFW
    glfwInit();
    // Set all the required options for GLFW
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);

    // Create a GLFWwindow object that we can use for GLFW's functions
    GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
    glfwMakeContextCurrent(window);

    // Set the required callback functions
    glfwSetKeyCallback(window, key_callback);

    // Set this to true so GLEW knows to use a modern approach to retrieving function pointers and extensions
    glewExperimental = GL_TRUE;
    // Initialize GLEW to setup the OpenGL Function pointers
    glewInit();

    // Define the viewport dimensions
    glViewport(0, 0, WIDTH, HEIGHT);

    // Build and compile our shader program
    Shader ourShader("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\vertexShader.txt", "C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\fragmentShader.txt");

    // 设置顶点数据
    GLfloat vertices[] = {
         // 顶点位置           // 顶点颜色         // 纹理坐标
         0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f, // Top Right
         0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f, // Bottom Right
        -0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f, // Bottom Left
        -0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f  // Top Left 
    };
    // 设置索引
    GLuint indices[] = {  
        0, 1, 3, // 第一个三角形
        1, 2, 3  // 第二个三角形
    };

    // 创建VAO、VBO、EBO,绑定并设置VBO、EBO、VAO
    GLuint VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    // 位置数据解析
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);
    // 颜色数据解析
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);
    // 纹理坐标数据解析
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
    glEnableVertexAttribArray(2);

    glBindVertexArray(0); // 解绑VAO(这时VAO中包含VBO和EBO)


    // 加载纹理
    GLuint texture;
    glGenTextures(1, &texture);
    // 将纹理对象texture绑定到GL_TEXTURE_2D上,往后对GL_TEXTURE_2D的操作都将对texture执行
    glBindTexture(GL_TEXTURE_2D, texture);
    // 设置纹理在不同轴的环绕方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);	
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    // 设置纹理的纹理过滤方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // 加载纹理图片
    int width, height;
    unsigned char* image = SOIL_load_image("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Resource\\container.jpg", &width, &height, 0, SOIL_LOAD_RGB);
    // 将纹理图片保存到绑定GL_TEXTURE_2D的对象上,以字符数组形式
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    // 生成GL_TEXTURE_2D绑定对象的多级渐远纹理
    glGenerateMipmap(GL_TEXTURE_2D);

    // 释放纹理图片内存,解绑纹理texture
    SOIL_free_image_data(image);
    glBindTexture(GL_TEXTURE_2D, 0); 

    // 游戏循环
    while (!glfwWindowShouldClose(window))
    {
        // 事件检测
        glfwPollEvents();

        // 清除屏幕颜色缓存
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // 绑定纹理
        glBindTexture(GL_TEXTURE_2D, texture);

        // 使用着色器
        ourShader.Use();

        // 绑定VAO 并使用glDrawElements绘图
        glBindVertexArray(VAO);
        //glDrawElements的第一个参数为绘制的图元类型
        //第二个参数为模型的总顶点数,第三个参数为索引值的类型,最后一个值是指向索引存贮位置的指针
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
        // 解绑VAO
        glBindVertexArray(0);

        // 交换前后缓冲区
        glfwSwapBuffers(window);
    }
    // 释放VAO、VBO、EBO占用的的显存
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);
    // 释放GLFW申请的内存
    glfwTerminate();
    return 0;
}

// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
    if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
        glfwSetWindowShouldClose(window, GL_TRUE);
}

 顶点颜色的使用:
在这里插入图片描述

color = texture(ourTexture, TexCoord) * vec4(ourColor, 1.0f);

纹理单元

 一个纹理的位置值通常称为一个纹理单元(Texture Unit)。一个纹理的默认纹理单元是0,它是默认的激活纹理单元,所以教程前面部分我们没有分配一个位置值。

 纹理单元的主要目的是让我们在着色器中可以使用多于一个的纹理。通过把纹理单元赋值给采样器,我们可以一次绑定多个纹理,只要我们首先激活对应的纹理单元。就像glBindTexture一样,我们可以使用glActiveTexture激活纹理单元,传入我们需要使用的纹理单元:

glActiveTexture(GL_TEXTURE0); //在绑定纹理之前先激活纹理单元
glBindTexture(GL_TEXTURE_2D, texture);

 激活纹理单元之后,接下来的glBindTexture函数调用会绑定这个纹理到当前激活的纹理单元,纹理单元GL_TEXTURE0默认总是被激活,所以我们在前面的例子里当我们使用glBindTexture的时候,无需激活任何纹理单元。

 片段着色器代码:

#version 330 core

uniform sampler2D ourTexture1;
uniform sampler2D ourTexture2;

void main()
{
    color = mix(texture(ourTexture1, TexCoord), texture(ourTexture2, TexCoord), 0.2);
}

 最终输出颜色现在是两个纹理的结合。GLSL内建的mix函数需要接受两个值作为参数,并对它们根据第三个参数进行线性插值。。如果第三个值是0.0,它会返回第一个输入;如果是1.0,会返回第二个输入值。0.2会返回80%的第一个输入颜色和20%的第二个输入颜色,即返回两个纹理的混合色。我们现在需要载入并创建另一个纹理;你应该对这些步骤很熟悉了。记得创建另一个纹理对象,载入图片,使用glTexImage2D生成最终纹理。对于第二个纹理我们使用一张你学习OpenGL时的面部表情图片。为了使用第二个纹理(以及第一个),我们必须改变一点渲染流程,先绑定两个纹理到对应的纹理单元,然后定义哪个uniform采样器对应哪个纹理单元:

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture1);
glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture1"), 0);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, texture2);
glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture2"), 1);

glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);

 注意,我们使用glUniform1i设置uniform采样器的位置值,或者说纹理单元。通过glUniform1i的设置,我们保证每个uniform采样器对应着正确的纹理单元。

 OpenGL要求y轴0.0坐标是在图片的底部的,但是图片的y轴0.0坐标通常在顶部。一些图片加载器比如DevIL在加载的时候有选项重置y原点,但是SOIL没有。SOIL却有一个叫做SOIL_load_OGL_texture函数可以使用一个叫做SOIL_FLAG_INVERT_Y的标记加载并生成纹理,这可以解决我们的问题。不过这个函数用了一些在现代OpenGL中失效的特性,所以现在我们仍需坚持使用SOIL_load_image,自己做纹理的生成。
在这里插入图片描述

最后的源代码

#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;
layout (location = 2) in vec2 texCoord;

out vec3 ourColor;
out vec2 TexCoord;

void main()
{
	gl_Position = vec4(position, 1.0f);
	ourColor = color;
	// We swap the y-axis by substracing our coordinates from 1. This is done because most images have the top y-axis inversed with OpenGL's top y-axis.
	// TexCoord = texCoord;
	TexCoord = vec2(texCoord.x, 1.0 - texCoord.y);
}
#version 330 core
in vec3 ourColor;
in vec2 TexCoord;

out vec4 color;

// Texture samplers
uniform sampler2D ourTexture1;
uniform sampler2D ourTexture2;

void main()
{
	// Linearly interpolate between both textures (second texture is only slightly combined)
	color = mix(texture(ourTexture1, TexCoord), texture(ourTexture2, TexCoord), 0.2);
}
#include <iostream>

// GLEW
#define GLEW_STATIC
#include <GL/glew.h>

// GLFW
#include <GLFW/glfw3.h>

// Other Libs
#include "SOIL.h"

// Other includes
#include "Shader.h"


// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);

// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 600;

// The MAIN function, from here we start the application and run the game loop
int main()
{
    // Init GLFW
    glfwInit();
    // Set all the required options for GLFW
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
    glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);

    // Create a GLFWwindow object that we can use for GLFW's functions
    GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
    glfwMakeContextCurrent(window);

    // Set the required callback functions
    glfwSetKeyCallback(window, key_callback);

    // Set this to true so GLEW knows to use a modern approach to retrieving function pointers and extensions
    glewExperimental = GL_TRUE;
    // Initialize GLEW to setup the OpenGL Function pointers
    glewInit();

    // Define the viewport dimensions
    glViewport(0, 0, WIDTH, HEIGHT);


    // Build and compile our shader program
    Shader ourShader("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\vertexShader.txt", "C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Shader\\fragmentShader.txt");


    // Set up vertex data (and buffer(s)) and attribute pointers
    GLfloat vertices[] = {
        // Positions          // Colors           // Texture Coords
         0.5f,  0.5f, 0.0f,   1.0f, 0.0f, 0.0f,   1.0f, 1.0f, // Top Right
         0.5f, -0.5f, 0.0f,   0.0f, 1.0f, 0.0f,   1.0f, 0.0f, // Bottom Right
        -0.5f, -0.5f, 0.0f,   0.0f, 0.0f, 1.0f,   0.0f, 0.0f, // Bottom Left
        -0.5f,  0.5f, 0.0f,   1.0f, 1.0f, 0.0f,   0.0f, 1.0f  // Top Left 
    };
    GLuint indices[] = {  // Note that we start from 0!
        0, 1, 3, // First Triangle
        1, 2, 3  // Second Triangle
    };
    GLuint VBO, VAO, EBO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glGenBuffers(1, &EBO);

    glBindVertexArray(VAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    // Position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);
    // Color attribute
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);
    // TexCoord attribute
    glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
    glEnableVertexAttribArray(2);

    glBindVertexArray(0); // Unbind VAO


    // Load and create a texture 
    GLuint texture1;
    GLuint texture2;
    // ====================
    // Texture 1
    // ====================
    glGenTextures(1, &texture1);
    glBindTexture(GL_TEXTURE_2D, texture1); // All upcoming GL_TEXTURE_2D operations now have effect on our texture object
    // Set our texture parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);	// Set texture wrapping to GL_REPEAT
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    // Set texture filtering
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // Load, create texture and generate mipmaps
    int width, height;
    unsigned char* image = SOIL_load_image("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Resource\\container.jpg", &width, &height, 0, SOIL_LOAD_RGB);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    glGenerateMipmap(GL_TEXTURE_2D);
    SOIL_free_image_data(image);
    glBindTexture(GL_TEXTURE_2D, 0); // Unbind texture when done, so we won't accidentily mess up our texture.
    // ===================
    // Texture 2
    // ===================
    glGenTextures(1, &texture2);
    glBindTexture(GL_TEXTURE_2D, texture2);
    // Set our texture parameters
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    // Set texture filtering
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // Load, create texture and generate mipmaps
    image = SOIL_load_image("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Resource\\awesomeface.png", &width, &height, 0, SOIL_LOAD_RGB);
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    glGenerateMipmap(GL_TEXTURE_2D);
    SOIL_free_image_data(image);
    glBindTexture(GL_TEXTURE_2D, 0);


    // Game loop
    while (!glfwWindowShouldClose(window))
    {
        // Check if any events have been activiated (key pressed, mouse moved etc.) and call corresponding response functions
        glfwPollEvents();

        // Render
        // Clear the colorbuffer
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);

        // Activate shader
        ourShader.Use();

        // Bind Textures using texture units
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D, texture1);
        glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture1"), 0);
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, texture2);
        glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture2"), 1);

        // Draw container
        glBindVertexArray(VAO);
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
        glBindVertexArray(0);

        // Swap the screen buffers
        glfwSwapBuffers(window);
    }
    // Properly de-allocate all resources once they've outlived their purpose
    glDeleteVertexArrays(1, &VAO);
    glDeleteBuffers(1, &VBO);
    glDeleteBuffers(1, &EBO);
    // Terminate GLFW, clearing any resources allocated by GLFW.
    glfwTerminate();
    return 0;
}

// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
    if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
        glfwSetWindowShouldClose(window, GL_TRUE);
}

核心代码

纹理的配置

	// 创建纹理并绑定GL_TEXTURE_2D
	glGenTextures(1, &texture1);
    glBindTexture(GL_TEXTURE_2D, texture1); 
	// 配置不同轴的纹理环绕
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);	
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
	// 配置放大和缩小的纹理过滤
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	// 加载纹理图片
    int width, height;
    unsigned char* image = SOIL_load_image("C:\\Users\\32156\\source\\repos\\LearnOpenGL\\Resource\\container.jpg", &width, &height, 0, SOIL_LOAD_RGB);
    // 绑定纹理图片到绑定GL_TEXTURE_2D的对象texture1
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
    // 生成多级渐远纹理
    glGenerateMipmap(GL_TEXTURE_2D);
    // 释放图片并解绑texture
    SOIL_free_image_data(image);
    glBindTexture(GL_TEXTURE_2D, 0); 

纹理单元的激活

    while (!glfwWindowShouldClose(window))
    {
        glfwPollEvents();

        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT);
		
		// 使用着色器
        ourShader.Use();
        
		// 激活纹理单元
        glActiveTexture(GL_TEXTURE0);
        // 绑定纹理对象到激活的纹理单元
        glBindTexture(GL_TEXTURE_2D, texture1);
        // 设置着色器程序中的纹理采样器对应的纹理单元
        glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture1"), 0);
		
		// 同上
        glActiveTexture(GL_TEXTURE1);
        glBindTexture(GL_TEXTURE_2D, texture2);
        glUniform1i(glGetUniformLocation(ourShader.Program, "ourTexture2"), 1);

        glBindVertexArray(VAO);
        glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
        glBindVertexArray(0);

        glfwSwapBuffers(window);
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/452891.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【ArcGIS Pro二次开发】(23):用地编码和用地名称的规范性检查

在国空或村庄规划的编制过程中&#xff0c;随着规划用地的调整&#xff0c;经常会手动修改用地编码和用地名称&#xff0c;不可避免的会出现错误&#xff0c;如果单靠人工校对&#xff0c;累人又不能保证准确性。这个工具的目的就是检查用地编码和用地名称是否规范&#xff0c;…

最短路径Floyd与区间DP

floyd算法是求最短路径的算法&#xff0c;算法复杂度为n(o^3),其优点在于能够一次求解所有点到其他点的最短路径&#xff0c;不需要其他运算&#xff0c;使用二维数组存储。其三层循环自外向内分别为&#xff1a;中间点&#xff0c;起始点和终点。状态方程为&#xff1a; num[…

【社区图书馆】《网络工程师的Python之路:网络运维自动化实战(第2版)》

文章目录 图书前言图书简介图书作者、简介图书好评图书目录总结&#xff1a;本人选择此图书的意义 图书前言 光阴似箭&#xff0c;岁月如梭。转眼之间&#xff0c;距离本书最早的电子书出版已经过去了三年之久。承蒙广大读者的厚爱&#xff0c;电子书和第1版纸质书的发行量远远…

【云原生】Java 应用程序在 Kubernetes 上棘手的内存管理

文章目录 引言JVM 内存模型简介非 Heap 内存Heap 堆内存Kubernetes 内存管理JVM 和 Kubernetes场景 1 — Java Out Of Memory 错误场景 2 — Pod 超出内存 limit 限制场景 3 — Pod 超出节点的可用内存场景 4 — 参数配置良好&#xff0c;应用程序运行良好 结语 引言 如何结合…

PCIe-DMA多通道/高性能/超低延时/超低抖动视频采集显示V4L2驱动

1 介绍 基于PCI ExpressIntegrated Block&#xff0c;Multi-Channel PCIe QDMA Subsystem实现了使用DMA地址队列的独立多通道、高性能Continous或Scather GatherDMA&#xff0c;提供fifo/AXI4-Stream用户接口。 基于PCI ExpressIntegrated Block&#xff0c;Multi-Channel PCIe…

大型体检管理系统源码:适用于大中型医院或独立体检中心

一套专业的体检管理系统源码&#xff0c;是医院、体检中心等单位开展体检业务的得力助手。它将以往人工操作的健康体检过程所得到信息转换成全信息化的电脑管理&#xff0c;使体检过程更为流畅、更有条理&#xff0c;更加便于管理&#xff0c;从而实现体检业务管理的自动化、信…

2023年报考CSM敏捷教练认证好不好?含金量高吗?

CSM&#xff0c;Certified Scrum Master&#xff0c;是Scrum联盟发起的Scrum认证。帮助个人从自身、团队和组织层面&#xff0c;学习技能和工具来扩展实践的层面&#xff0c;帮助团队正确使用Scrum&#xff0c;从而提高项目整体成功的可能性。 认证收益 职业能力提升 推动企业…

AIGC技术周报|为文生图模型提供“参考”;交互式prompt系统:让文生图模型更懂你

AIGC通过借鉴现有的、人类创造的内容来快速完成内容创作。ChatGPT、Bard等AI聊天机器人以及DallE 2、Stable Diffusion等文生图模型都属于AIGC的典型案例。「AIGC技术周报」将为你带来最新的paper、博客等前瞻性研究。 交互式prompt系统&#xff1a;让文生图模型更懂你 文生图…

JVM性能监测工具-JConsole

JVM性能监测工具-JConsole JConsole工具是JDK自带的图形化性能监控工具。并通过JConsole工具&#xff0c; 可以查看Java应用程序的运行概况&#xff0c; 监控堆信息、 元空间使用情况及类的加载情况等。 JConsole程序在%JAVA_HOM E%/bin目录下 或者你可以直接在命令行对他进…

【Java代码】MP3、flac歌曲批量生成同名的“xxx.lrc”歌词文件导入索尼黑砖二代

目录 1、准备条件2、实现方式3、代码环境和maven依赖4、Java代码5、示例1结果6、示例2结果7、一个小问题8、“音乐标签”下载地址 1、准备条件 网易云下载的MP3、flac后缀的歌曲若干首&#xff08;ncm后缀的歌曲需要还原格式&#xff0c;不然会随着VIP过期而无法听&#xff09…

《CTFshow-Web入门》06. Web 51~60

Web 51~60 web51题解 web52知识点题解 web53知识点题解 web54知识点题解 web55知识点题解 web56知识点题解 web57知识点题解 web58知识点题解 web59题解 web60题解 ctf - web入门 web51 题解 相比上一题多过滤了 tac 命令。那换一个即可。 题解&#xff1a; url ?cnl<f…

go/java/C++覆盖率工具原理汇总学习记录

go–goc goc采用的是插桩源码的形式&#xff0c;而不是待二进制执行时再去设置breakpoints。这就导致了当前go的测试覆盖率收集技术&#xff0c;一定是侵入式的&#xff0c;会修改目标程序源码。直接看案例 package mainimport "fmt"func main() {test2(3)fmt.Prin…

Vue项目基于driverjs实现新用户导航

引导页就是当用户第一次或者手动进行触发的时候&#xff0c;提示给用户当前系统的模块介绍&#xff0c;比如哪里是退出&#xff0c;哪里是菜单等等相应的操作。 无论是开发 APP 还是 web 应用&#xff0c;新手引导都是一个很常见的需求&#xff0c;一般在这2个方面需要新手引导…

Java阶段二Day07

Java阶段二Day07 文章目录 Java阶段二Day07V17UserControllerDispatcherServletControllerRequestMapping V18DispatcherServletHandleMapping V19BirdBootApplication 线程池线程的执行过程线程池API 数据库数据库的基本概念数据库管理系统中常见的概念 SQL分类DDL语言-数据定…

浅析流媒体技术的发展趋势及EasyCVR视频技术的应用

随着科技的不断发展&#xff0c;流媒体已经成为人们日常生活中必不可少的一部分。为了进一步提高流媒体的质量&#xff0c;未来的技术革新方向将集中在以下几个方面&#xff1a; 1&#xff09;提高视频编解码技术的质量和效率 随着高清视频的普及&#xff0c;人们对流媒体的质…

GD32F470 移植STM32F429工程 Keil调试笔记

keil版本&#xff1a;5.25 安装 GigaDevice.GD32F4xx_DFP.3.0.4.pack Keil.STM32F4xx_DFP.2.15.0.pack 一、GD32F470 与 STM32F429 切换编译 1、原项目为STM32F429 工程&#xff0c;切换到GD32F470 只需在 Options for Target"“对话框的Device菜单中选中“GD32F470II”…

Http协议—请求的构造

目录 一、通过 form表单 构造HTTP请求 1、form 发送 Get 请求 &#xff08;1&#xff09;form 的重要参数 &#xff08;2&#xff09;input 的重要参数 2、通过 form 构造 Post 请求 二、通过 ajax 构造 HTTP 请求 1、基于 jQuery 中的 ajax 构造 &#xff08;1&#x…

动态网站开发讲课笔记07:EL和JSTL

文章目录 零、本节学习目标一、EL&#xff08;一&#xff09;EL基本语法1、EL的概念2、EL的语法3、案例演示&#xff08;1&#xff09;用EL读取保存的信息&#xff08;2&#xff09;使用Java代码与EL获取信息的对比 4、EL基本语法的特点 &#xff08;二&#xff09;EL中的标识符…

从语言模型到ChatGPT,大模型训练全攻略

文&#xff5c;python 前言 你是否想过&#xff0c;为什么ChatGPT能够如此火爆呢&#xff1f;我认为这主要是因为ChatGPT提供了好玩、有用的对话式交互功能&#xff0c;能够为用户提供帮助&#xff0c;而不仅仅是依靠“大”模型的魅力。毕竟&#xff0c;GPT-3在2020年就已经推出…

RedHat yum没有已启用源的解决方法

一般安装的红帽系统&#xff0c;自带的yum在没有付费的情况下是无使用的&#xff0c;所以我们要进行换源。 1、环境准备 先检查以下我们的linux系统环境&#xff0c;看看是不是Redhat7的版本 &#xff0c;出现如下图所示的界面 cat /etc/redhat-release 检查系统中是否安…