深入了解Synchronized同步锁的优化

news2025/1/22 20:50:54

大家好,我是易安!今天我们来聊一下Synchronized同步锁的优化。

在并发编程中,多个线程访问同一个共享资源时,我们必须考虑如何维护数据的原子性。 在JDK1.5之前,Java是依靠Synchronized关键字实现锁功能来做到这点的。Synchronized是JVM实现的一种内置锁,锁的获取和释放是由JVM隐式实现。

到了JDK1.5版本,并发包中新增了Lock接口来实现锁功能,它提供了与Synchronized关键字类似的同步功能,只是在使用时需要显式获取和释放锁。

Lock同步锁是基于Java实现的,而Synchronized是基于底层操作系统的Mutex Lock实现的,每次获取和释放锁操作都会带来用户态和内核态的切换,从而增加系统性能开销。因此,在锁竞争激烈的情况下,Synchronized同步锁在性能上就表现得非常糟糕,它也常被大家称为重量级锁。

特别是在单个线程重复申请锁的情况下,JDK1.5版本的Synchronized锁性能要比Lock的性能差很多。例如,在Dubbo基于Netty实现的通信中,消费端向服务端通信之后,由于接收返回消息是异步,所以需要一个线程轮询监听返回信息。而在接收消息时,就需要用到锁来确保request session的原子性。如果我们这里使用Synchronized同步锁,那么每当同一个线程请求锁资源时,都会发生一次用户态和内核态的切换。

到了JDK1.6版本之后,Java对Synchronized同步锁做了充分的优化,甚至在某些场景下,它的性能已经超越了Lock同步锁。今天我们就来看看Synchronized同步锁究竟是通过了哪些优化,实现了性能地提升。

Synchronized同步锁实现原理

了解Synchronized同步锁优化之前,我们先来看看它的底层实现原理,这样可以帮助我们更好地理解后面的内容。

通常Synchronized实现同步锁的方式有两种,一种是修饰方法,一种是修饰方法块。 以下就是通过Synchronized实现的两种同步方法加锁的方式:

// 关键字在实例方法上,锁为当前实例
 public synchronized void method1() {
     // code
 }

 // 关键字在代码块上,锁为括号里面的对象
 public void method2() {
     Object o = new Object();
     synchronized (o) {
         // code
     }
 }

下面我们可以通过反编译看下具体字节码的实现,运行以下反编译命令,就可以输出我们想要的字节码:

javac -encoding UTF-8 SyncTest.java  //先运行编译class文件命令

javap -v SyncTest.class //再通过javap打印出字节文件

通过输出的字节码,你会发现:Synchronized在修饰同步代码块时,是由 monitorenter和monitorexit指令来实现同步的。进入monitorenter 指令后,线程将持有Monitor对象,退出monitorenter指令后,线程将释放该Monitor对象。

  public void method2();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=2, locals=4, args_size=1
         0: new           #2
         3: dup
         4: invokespecial #1
         7: astore_1
         8: aload_1
         9: dup
        10: astore_2
        11: monitorenter //monitorenter 指令
        12: aload_2
        13: monitorexit  //monitorexit  指令
        14: goto          22
        17: astore_3
        18: aload_2
        19: monitorexit
        20: aload_3
        21: athrow
        22: return
      Exception table:
         from    to  target type
            12    14    17   any
            17    20    17   any
      LineNumberTable:
        line 18: 0
        line 19: 8
        line 21: 12
        line 22: 22
      StackMapTable: number_of_entries = 2
        frame_type = 255 /* full_frame */
          offset_delta = 17
          locals = [ class com/demo/io/SyncTest, class java/lang/Object, class java/lang/Object ]
          stack = [ class java/lang/Throwable ]
        frame_type = 250 /* chop */
          offset_delta = 4

再来看以下同步方法的字节码,你会发现:当Synchronized修饰同步方法时,并没有发现monitorenter和monitorexit指令,而是出现了一个ACC_SYNCHRONIZED标志。

这是因为JVM使用了ACC_SYNCHRONIZED访问标志来区分一个方法是否是同步方法。当方法调用时,调用指令将会检查该方法是否被设置ACC_SYNCHRONIZED访问标志。如果设置了该标志,执行线程将先持有Monitor对象,然后再执行方法。在该方法运行期间,其它线程将无法获取到该Mointor对象,当方法执行完成后,再释放该Monitor对象。

   public synchronized void method1();
    descriptor: ()V
    flags: ACC_PUBLIC, ACC_SYNCHRONIZED // ACC_SYNCHRONIZED 标志
    Code:
      stack=0, locals=1, args_size=1
         0: return
      LineNumberTable:
        line 8: 0

通过以上的源码,我们再来看看Synchronized修饰方法是怎么实现锁原理的。

JVM中的同步是基于进入和退出管程(Monitor)对象实现的。每个对象实例都会有一个Monitor,Monitor可以和对象一起创建、销毁。Monitor是由ObjectMonitor实现,而ObjectMonitor是由C++的ObjectMonitor.hpp文件实现,如下所示:

ObjectMonitor() {
   _header = NULL;
   _count = 0; //记录个数
   _waiters = 0,
   _recursions = 0;
   _object = NULL;
   _owner = NULL;
   _WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet
   _WaitSetLock = 0 ;
   _Responsible = NULL ;
   _succ = NULL ;
   _cxq = NULL ;
   FreeNext = NULL ;
   _EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表
   _SpinFreq = 0 ;
   _SpinClock = 0 ;
   OwnerIsThread = 0 ;
}

当多个线程同时访问一段同步代码时,多个线程会先被存放在ContentionList和_EntryList 集合中,处于block状态的线程,都会被加入到该列表。接下来当线程获取到对象的Monitor时,Monitor是依靠底层操作系统的Mutex Lock来实现互斥的,线程申请Mutex成功,则持有该Mutex,其它线程将无法获取到该Mutex,竞争失败的线程会再次进入ContentionList被挂起。

如果线程调用wait() 方法,就会释放当前持有的Mutex,并且该线程会进入WaitSet集合中,等待下一次被唤醒。如果当前线程顺利执行完方法,也将释放Mutex。

alt

看完上面的讲解,相信你对同步锁的实现原理已经有个深入的了解了。总结来说就是,同步锁在这种实现方式中,因Monitor是依赖于底层的操作系统实现,存在用户态与内核态之间的切换,所以增加了性能开销。

锁升级优化

为了提升性能,JDK1.6引入了偏向锁、轻量级锁、重量级锁概念,来减少锁竞争带来的上下文切换,而正是新增的Java对象头实现了锁升级功能。

当Java对象被Synchronized关键字修饰成为同步锁后,围绕这个锁的一系列升级操作都将和Java对象头有关。

Java对象头

在JDK1.6 JVM中,对象实例在堆内存中被分为了三个部分:对象头、实例数据和对齐填充。其中Java对象头由Mark Word、指向类的指针以及数组长度三部分组成。

Mark Word记录了对象和锁有关的信息。Mark Word在64位JVM中的长度是64bit,我们可以一起看下64位JVM的存储结构是怎么样的。如下图所示:

alt

锁升级功能主要依赖于Mark Word中的锁标志位和释放偏向锁标志位,Synchronized同步锁就是从偏向锁开始的,随着竞争越来越激烈,偏向锁升级到轻量级锁,最终升级到重量级锁。下面我们就沿着这条优化路径去看下具体的内容。

1.偏向锁

偏向锁主要用来优化同一线程多次申请同一个锁的竞争。在某些情况下,大部分时间是同一个线程竞争锁资源,例如,在创建一个线程并在线程中执行循环监听的场景下,或单线程操作一个线程安全集合时,同一线程每次都需要获取和释放锁,每次操作都会发生用户态与内核态的切换。

偏向锁的作用就是,当一个线程再次访问这个同步代码或方法时,该线程只需去对象头的Mark Word中去判断一下是否有偏向锁指向它的ID,无需再进入Monitor去竞争对象了。 当对象被当做同步锁并有一个线程抢到了锁时,锁标志位还是01,“是否偏向锁”标志位设置为1,并且记录抢到锁的线程ID,表示进入偏向锁状态。

一旦出现其它线程竞争锁资源时,偏向锁就会被撤销。偏向锁的撤销需要等待全局安全点,暂停持有该锁的线程,同时检查该线程是否还在执行该方法,如果是,则升级锁,反之则被其它线程抢占。

下图中红线流程部分为偏向锁获取和撤销流程:

alt

因此,在高并发场景下,当大量线程同时竞争同一个锁资源时,偏向锁就会被撤销,发生stop the word后, 开启偏向锁无疑会带来更大的性能开销,这时我们可以通过添加JVM参数关闭偏向锁来调优系统性能,示例代码如下:

-XX:-UseBiasedLocking //关闭偏向锁(默认打开)

-XX:+UseHeavyMonitors  //设置重量级锁

2.轻量级锁

当有另外一个线程竞争获取这个锁时,由于该锁已经是偏向锁,当发现对象头Mark Word中的线程ID不是自己的线程ID,就会进行CAS操作获取锁,如果获取成功,直接替换Mark Word中的线程ID为自己的ID,该锁会保持偏向锁状态;如果获取锁失败,代表当前锁有一定的竞争,偏向锁将升级为轻量级锁。

轻量级锁适用于线程交替执行同步块的场景,绝大部分的锁在整个同步周期内都不存在长时间的竞争。

下图中红线流程部分为升级轻量级锁及操作流程:

alt

3.自旋锁与重量级锁

轻量级锁CAS抢锁失败,线程将会被挂起进入阻塞状态。如果正在持有锁的线程在很短的时间内释放资源,那么进入阻塞状态的线程无疑又要申请锁资源。

JVM提供了一种自旋锁,可以通过自旋方式不断尝试获取锁,从而避免线程被挂起阻塞。这是基于大多数情况下,线程持有锁的时间都不会太长,毕竟线程被挂起阻塞可能会得不偿失。

从JDK1.7开始,自旋锁默认启用,自旋次数由JVM设置决定,这里我不建议设置的重试次数过多,因为CAS重试操作意味着长时间地占用CPU。

自旋锁重试之后如果抢锁依然失败,同步锁就会升级至重量级锁,锁标志位改为10。在这个状态下,未抢到锁的线程都会进入Monitor,之后会被阻塞在_WaitSet队列中。

下图中红线流程部分为自旋后升级为重量级锁的流程:

alt

在锁竞争不激烈且锁占用时间非常短的场景下,自旋锁可以提高系统性能。一旦锁竞争激烈或锁占用的时间过长,自旋锁将会导致大量的线程一直处于CAS重试状态,占用CPU资源,反而会增加系统性能开销。所以自旋锁和重量级锁的使用都要结合实际场景。

在高负载、高并发的场景下,我们可以通过设置JVM参数来关闭自旋锁,优化系统性能,示例代码如下:

-XX:-UseSpinning //参数关闭自旋锁优化(默认打开)
-XX:PreBlockSpin //参数修改默认的自旋次数。JDK1.7后,去掉此参数,由jvm控制

动态编译实现锁消除/锁粗化

除了锁升级优化,Java还使用了编译器对锁进行优化。JIT 编译器在动态编译同步块的时候,借助了一种被称为逃逸分析的技术,来判断同步块使用的锁对象是否只能够被一个线程访问,而没有被发布到其它线程。

确认是的话,那么 JIT 编译器在编译这个同步块的时候不会生成 synchronized 所表示的锁的申请与释放的机器码,即消除了锁的使用。在 Java7 之后的版本就不需要手动配置了,该操作可以自动实现。

锁粗化同理,就是在 JIT 编译器动态编译时,如果发现几个相邻的同步块使用的是同一个锁实例,那么 JIT 编译器将会把这几个同步块合并为一个大的同步块,从而避免一个线程“反复申请、释放同一个锁”所带来的性能开销。

减小锁粒度

除了锁内部优化和编译器优化之外,我们还可以通过代码层来实现锁优化,减小锁粒度就是一种惯用的方法。

当我们的锁对象是一个数组或队列时,集中竞争一个对象的话会非常激烈,锁也会升级为重量级锁。我们可以考虑将一个数组和队列对象拆成多个小对象,来降低锁竞争,提升并行度。

最经典的减小锁粒度的案例就是JDK1.8之前实现的ConcurrentHashMap版本。我们知道,HashTable是基于一个数组+链表实现的,所以在并发读写操作集合时,存在激烈的锁资源竞争,也因此性能会存在瓶颈。而ConcurrentHashMap就很很巧妙地使用了分段锁Segment来降低锁资源竞争,如下图所示:

alt

总结

JVM在JDK1.6中引入了分级锁机制来优化Synchronized,当一个线程获取锁时,首先对象锁将成为一个偏向锁,这样做是为了优化同一线程重复获取导致的用户态与内核态的切换问题;其次如果有多个线程竞争锁资源,锁将会升级为轻量级锁,它适用于在短时间内持有锁,且分锁有交替切换的场景;轻量级锁还使用了自旋锁来避免线程用户态与内核态的频繁切换,大大地提高了系统性能;但如果锁竞争太激烈了,那么同步锁将会升级为重量级锁。

减少锁竞争,是优化Synchronized同步锁的关键。我们应该尽量使Synchronized同步锁处于轻量级锁或偏向锁,这样才能提高Synchronized同步锁的性能;通过减小锁粒度来降低锁竞争也是一种最常用的优化方法;另外我们还可以通过减少锁的持有时间来提高Synchronized同步锁在自旋时获取锁资源的成功率,避免Synchronized同步锁升级为重量级锁。

如果本文对你有帮助的话,欢迎点赞分享,这对我继续分享&创作优质文章非常重要。感谢 !

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/450695.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java核心技术 卷1-总结-10

Java核心技术 卷1-总结-10 通配符类型通配符概念通配符的超类型限定无限定通配符通配符捕获 通配符类型 通配符概念 通配符类型中&#xff0c;允许类型参数变化。 例如&#xff0c;通配符类型Pair<? extends Employee>表示任何泛型Pair类型&#xff0c;它的类型参数是…

LeetCode_动态规划_中等_1105.填充书架

目录 1.题目2.思路3.代码实现&#xff08;Java&#xff09; 1.题目 给定一个数组 books &#xff0c;其中 books[i] [thicknessi, heighti] 表示第 i 本书的厚度和高度。你也会得到一个整数 shelfWidth。 按顺序将这些书摆放到总宽度为 shelfWidth 的书架上。 先选几本书放…

机器学习基本模型与算法在线实验闯关

机器学习基本模型与算法在线实验闯关 文章目录 机器学习基本模型与算法在线实验闯关一、缺失值填充二、数据标准化三、支持向量机分类模型及其应用四、逻辑回归模型及其应用五、神经网络分类模型及其应用六、线性回归模型及其应用七、神经网络回归模型及其应用八、支持向量机回…

AIGC跨过奇点时刻,亚马逊云科技展露新峥嵘

AIGC是云计算的Game changer&#xff0c;将从根本上改变云计算乃至整个科技行业的游戏规则&#xff0c;作为云计算行业的Game Rulemaker&#xff0c;亚马逊云科技也展露出新的峥嵘。4月13日&#xff0c;亚马逊云科技宣布推出生成式AI新工具&#xff0c;包括Amazon Bedrock和Ama…

Java核心技术 卷1-总结-11

Java核心技术 卷1-总结-11 Java 集合框架将集合的接口与实现分离Collection接口迭代器泛型实用方法集合框架中的接口 Java 集合框架 将集合的接口与实现分离 Java集合类库将接口&#xff08;interface&#xff09;与实现&#xff08;implementation&#xff09;分离。 例如队…

把Windows装进内存条里,提前感受超越PCIe 6.0固态的顶级体验

这两年电脑内存条是越来越白菜价了&#xff0c;看到大伙儿慢慢富足起来的内存容量&#xff0c;小忆是由衷地感到高兴。 不过话说&#xff0c;动不动 32G、64G 内存你真能用得完吗&#xff1f;为了榨干大家真金白银买来的空闲内存价值。 咱这期整个骚操作——将 Windows 11 系统…

虚拟机安装linux系统centos(保姆级)

虚拟机安装linux系统centos 1.软硬件准备2.虚拟机准备1.打开VMware选择新建虚拟机2.典型安装与自定义安装3.虚拟机兼容性选择4.选择稍后安装操作系统5.操作系统的选择7.处理器与内存的分配8.网络连接类型的选择&#xff0c;网络连接类型一共有桥接、NAT、仅主机和不联网四种。9…

ArcMap气温数据插值处理

一、插值数据处理 1.先把气温excel在excel中另存为气温.csv&#xff08;网盘链接中有转好的csv文件&#xff09;&#xff0c;导入数据江苏.shp和jiangsustation.shp 和气温.csv 数据在文末百度网盘链接中 2.打开jiangsustation.shp的属性表&#xff0c;连接与字段-连接-连接的…

RabbitMQ的五种工作模式

目录 前言介绍 &#xff08;1&#xff09;启动RabbitMQ &#xff08;2&#xff09;账户管理 一、简单模式 &#xff08;1&#xff09;概念 &#xff08;2&#xff09;生产者代码 &#xff08;3&#xff09;消费者代码 二、工作队列模式 &#xff08;1&#xff09;概念…

LLVM编译流程

一、LLVM 1.1 LLVM概述 LLVM是构架编译器(compiler)的框架系统,以C编写而成,用于优化以任意程序语言编写的程序的编译时间(compile-time)、链接时间(link-time)、运行时间(run-time)以及空闲时间(idle-time),对开发者保持开放,并兼容已有脚本.LLVM计划启动于2000年,最初由美国…

Dynamics 365 开启 Modern advanced find后如何创建个人视图

本篇是自己在新的环境被新的高级查找晃的没找到如何创建个人视图而发。如何在老的高级查找页面创建这里就不表了。 D365 2022 Wav1后有了新的feature叫Modern advanced find&#xff0c;开启方式如下&#xff0c;进Power Platform的管理中心&#xff0c;找到你对应的环境&#…

Java核心技术 卷1-总结-6

Java核心技术 卷1-总结-6 接口示例接口与回调Comparator接口对象克隆 lambda表达式为什么引入lambda表达式lambda表达式的语法 接口示例 接口与回调 回调&#xff08;callback&#xff09;是一种常见的程序设计模式。在这种模式中&#xff0c;可以指出某个特定事件发生时应该…

珍藏多年的MySQL函数大全笔记,掌握数据库真不难

做程序员的谁会离得开数据库呢&#xff1f;今天就来分享一下我整理的MySQL的常用函数&#xff0c;基本上囊括了平时要用的函数&#xff0c;它们已经陪我走过了不少年头了&#xff0c;风里来雨里去&#xff0c;缝缝补补又几年&#xff0c;希望能帮到你们&#xff01; 如果数据库…

短视频app开发:如何实现视频直播功能

短视频源码的实现 在短视频app开发中&#xff0c;实现视频直播功能需要借助短视频源码。短视频源码可以提供一个完整的视频直播功能模块&#xff0c;包括视频采集、编码、推流等。因此&#xff0c;我们可以选择一些开源的短视频源码&#xff0c;例如LFLiveKit、ijkplayer等&am…

Nacos简介 安装 配置

简介 什么是注册中心 注册中心在微服务项目中扮演着非常重要的角色&#xff0c;是微服务架构中的纽带&#xff0c;类似于通讯录&#xff0c;它记录了服务和服务地址的映射关系。在分布式架构中&#xff0c;服务会注册到这里&#xff0c;当服务需要调用其它服务时&#xff0c;…

RHCE(六)

目录 1.编写脚本for1.sh,使用for循环创建20账户&#xff0c;账户名前缀由用户从键盘输入&#xff0c;账户初始密码由用户输入&#xff0c;例如: test1、test2、test3、.....、 test10 &#xff08;1&#xff09;编写脚本 &#xff08;2&#xff09;运行脚本 &#xff08;3&…

机器学习——主成分分析法(PCA)概念公式及应用python实现

机器学习——主成分分析法&#xff08;PCA&#xff09; 文章目录 机器学习——主成分分析法&#xff08;PCA&#xff09;一、主成分分析的概念二、主成分分析的步骤三、主成分分析PCA的简单实现四、手写体识别数字降维 一、主成分分析的概念 主成分分析&#xff08;PCA&#x…

华为OD机试真题(Java),分班(100%通过+复盘思路)

一、题目描述 幼儿园两个班的小朋友在排队时混在了一起&#xff0c;每位小朋友都知道自己是否与前面一位小朋友是否同班&#xff0c;请你帮忙把同班的小朋友找出来。 小朋友的编号为整数&#xff0c;与前一位小朋友同班用Y表示&#xff0c;不同班用N表示。 二、输入描述 输…

Android Jetpack - Navigation 组件:进行应用程序导航

一. Navigation 组件的介绍 1.1 什么是 Navigation 组件 Navigation 组件是一种 Android Jetpack 库&#xff0c;它可以帮助开发者轻松地实现应用程序中的导航功能。导航组件包含多个类和组件&#xff0c;包括导航图、目的地、导航控制器等&#xff0c;可以帮助我们管理应用程…

【Node.JS Web编程】记录从语法基础到网络框架的学习过程

文章目录 1. Node.JS 模块系统2. npm使用介绍3. 搭建第一个服务端应用4. GET / POST请求5. Web 前后端分离6. 使用Express框架搭建Web服务7. Request 和 Response8. 中间件9. 使用 Koa 框架搭建Web服务10. 使用 Egg 框架搭建Web服务11. egg 项目结构大全 注意&#xff1a;本次教…