Netty编解码器,Netty自定义编解码器解决粘包拆包问题,Netty编解码器的执行过程详解

news2024/12/23 22:23:57

文章目录

  • 一、编解码器概述
    • 1、编解码器概述
    • 2、编码器类关系图
    • 3、解码器类关系图
  • 二、以编解码器为例理解入站出站
    • 1、Server端
    • 2、Client端
    • 3、编解码器
    • 3、执行查看结果
    • 4、注意事项
  • 三、Netty其他内置编解码器
    • 1、ReplayingDecoder
    • 2、其他编码器
    • 3、内置编解码器处理粘包拆包问题
  • 四、自定义编解码器实现粘包拆包问题

一、编解码器概述

1、编解码器概述

当Netty发送或者接收一个消息的时候,就会发生一次数据转换。入站消息会被解码(从字节转换为另一种格式,比如java对象);出站消息会被编码成字节。

Netty 提供一系列实用的编解码器,他们都实现了 ChannelInboundHadnler 或者 ChannelOutboundHandler 接口。在这些类中,channelRead 方法已经被重写了。以入站为例,对于每个从入站 Channel 读取的消息,这个方法会被调用。随后,它将调用由解码器所提供的 decode()方法进行解码,并将已经解码的字节转发给 ChannelPipeline中的下一个 ChannelInboundHandler。

2、编码器类关系图

编码器都继承了MessageToByteEncoder抽象类,并且需要重写其encode方法。
在这里插入图片描述
我们发现,编码器继承了ChannelOutboundHandlerAdapter,表示出站操作才会执行。

3、解码器类关系图

解码器都继承了ByteToMessageDecoder抽象类,并且需要重写其decode方法。
在这里插入图片描述
我们发现,解码器继承了ChannelInboundHandlerAdapter,表示入站操作才会执行。

二、以编解码器为例理解入站出站

1、Server端


import io.netty.bootstrap.ServerBootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioServerSocketChannel;

public class MyServer {
    public static void main(String[] args) throws Exception{

        EventLoopGroup bossGroup = new NioEventLoopGroup(1);
        EventLoopGroup workerGroup = new NioEventLoopGroup();

        try {

            ServerBootstrap serverBootstrap = new ServerBootstrap();
            serverBootstrap.group(bossGroup,workerGroup)
                    .channel(NioServerSocketChannel.class)
                    .childHandler(new ChannelInitializer<SocketChannel>() {
                            @Override
                            protected void initChannel(SocketChannel ch) throws Exception {
                            ChannelPipeline pipeline = ch.pipeline();//一会下断点

                            //入站的handler进行解码 MyByteToLongDecoder
                            pipeline.addLast(new MyByteToLongDecoder());
                            //出站的handler进行编码
                            pipeline.addLast(new MyLongToByteEncoder());
                            //自定义的handler 处理业务逻辑
                            pipeline.addLast(new MyServerHandler());
                            System.out.println("end");
                        }
            }); //自定义初始化pipeline

            ChannelFuture channelFuture = serverBootstrap.bind(7000).sync();
            channelFuture.channel().closeFuture().sync();

        }finally {
            bossGroup.shutdownGracefully();
            workerGroup.shutdownGracefully();
        }
    }
}



import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;

public class MyServerHandler extends SimpleChannelInboundHandler<Long> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, Long msg) throws Exception {

        System.out.println("从客户端" + ctx.channel().remoteAddress() + " 读取到long " + msg);
        //给客户端发送一个long
        ctx.writeAndFlush(98765L);
    }

    @Override
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
        cause.printStackTrace();
        ctx.close();
    }
}

2、Client端


import io.netty.bootstrap.Bootstrap;
import io.netty.channel.ChannelFuture;
import io.netty.channel.ChannelInitializer;
import io.netty.channel.ChannelPipeline;
import io.netty.channel.EventLoopGroup;
import io.netty.channel.nio.NioEventLoopGroup;
import io.netty.channel.socket.SocketChannel;
import io.netty.channel.socket.nio.NioSocketChannel;

public class MyClient {
    public static void main(String[] args)  throws  Exception{

        EventLoopGroup group = new NioEventLoopGroup();

        try {

            Bootstrap bootstrap = new Bootstrap();
            bootstrap.group(group).channel(NioSocketChannel.class)
                    .handler(new ChannelInitializer<SocketChannel>() {
                        @Override
                        protected void initChannel(SocketChannel ch) throws Exception {

                            ChannelPipeline pipeline = ch.pipeline();

                            //加入一个出站的handler 对数据进行一个编码
                            pipeline.addLast(new MyLongToByteEncoder());

                            //这时一个入站的解码器(入站handler )
                            pipeline.addLast(new MyByteToLongDecoder());
                            //加入一个自定义的handler , 处理业务
                            pipeline.addLast(new MyClientHandler());

                        }
            }); //自定义一个初始化类

            ChannelFuture channelFuture = bootstrap.connect("localhost", 7000).sync();

            channelFuture.channel().closeFuture().sync();

        }finally {
            group.shutdownGracefully();
        }
    }
}


import io.netty.channel.ChannelHandlerContext;
import io.netty.channel.SimpleChannelInboundHandler;

public class MyClientHandler  extends SimpleChannelInboundHandler<Long> {
    @Override
    protected void channelRead0(ChannelHandlerContext ctx, Long msg) throws Exception {

        System.out.println("服务器的ip=" + ctx.channel().remoteAddress());
        System.out.println("收到服务器消息=" + msg);

    }

    //重写channelActive 发送数据
    @Override
    public void channelActive(ChannelHandlerContext ctx) throws Exception {
        System.out.println("MyClientHandler 发送数据");
        ctx.writeAndFlush(123456L); //发送的是一个long
    }
}

3、编解码器


import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.MessageToByteEncoder;

public class MyLongToByteEncoder extends MessageToByteEncoder<Long> {
    //编码方法
    @Override
    protected void encode(ChannelHandlerContext ctx, Long msg, ByteBuf out) throws Exception {

        System.out.println("MyLongToByteEncoder encode 被调用");
        System.out.println("msg=" + msg);
        out.writeLong(msg);

    }
}


import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.ByteToMessageDecoder;

import java.util.List;

public class MyByteToLongDecoder extends ByteToMessageDecoder {
    /**
     *
     * decode方法 会根据接收的数据,被调用多次, 直到确定没有新的元素被添加到list
     * , 或者是ByteBuf 没有更多的可读字节为止
     * 如果list out 不为空,就会将list的内容传递给下一个 channelinboundhandler处理, 该处理器的方法也会被调用多次
     *
     * @param ctx 上下文对象
     * @param in 入站的 ByteBuf
     * @param out List 集合,将解码后的数据传给下一个handler
     * @throws Exception
     */
    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {

        System.out.println("MyByteToLongDecoder 被调用");
        //因为 long 8个字节, 需要判断有8个字节,才能读取一个long
        if(in.readableBytes() >= 8) {
            out.add(in.readLong());
        }
    }
}

3、执行查看结果

client端:

MyClientHandler 发送数据
MyLongToByteEncoder encode 被调用
msg=123456
MyByteToLongDecoder 被调用
服务器的ip=localhost/127.0.0.1:7000
收到服务器消息=98765

server端:

MyByteToLongDecoder 被调用
从客户端/127.0.0.1:58478 读取到long 123456
MyLongToByteEncoder encode 被调用
msg=98765

根据我们的执行结果,我们可以简单的得出一个结论,执行流程大致是这样的:

在这里插入图片描述

4、注意事项

编解码器只能处理指定类型的数据,如果数据类型不匹配,会跳过编解码,但是数据不会丢失。

比如说客户端ctx.writeAndFlush(Unpooled.copiedBuffer(“abcdabcdabcdabcd”,CharsetUtil.UTF_8)); 发送一个16位的字符串,Encoder的encode方法虽然会执行,但是并不会编码。因此我们编写 Encoder 是要注意传入的数据类型和处理的数据类型一致。

我们看一下MessageToByteEncoder的write方法:

// io.netty.handler.codec.MessageToByteEncoder#write
@Override
public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
    ByteBuf buf = null;
    try {
        if (acceptOutboundMessage(msg)) {//判断当前msg 是不是应该处理的类型,如果是就处理,不是就跳过encode
            @SuppressWarnings("unchecked")
            I cast = (I) msg;
            buf = allocateBuffer(ctx, cast, preferDirect);
            try {
                encode(ctx, cast, buf);
            } finally {
                ReferenceCountUtil.release(cast);
            }

            if (buf.isReadable()) {
                ctx.write(buf, promise);
            } else {
                buf.release();
                ctx.write(Unpooled.EMPTY_BUFFER, promise);
            }
            buf = null;
        } else {
            ctx.write(msg, promise);
        }
    } catch (EncoderException e) {
        throw e;
    } catch (Throwable e) {
        throw new EncoderException(e);
    } finally {
        if (buf != null) {
            buf.release();
        }
    }
}

三、Netty其他内置编解码器

Netty内含许多编解码器,通常来说足够应对我们日常工作了:

1、ReplayingDecoder

import io.netty.buffer.ByteBuf;
import io.netty.channel.ChannelHandlerContext;
import io.netty.handler.codec.ReplayingDecoder;

import java.util.List;

public class MyByteToLongDecoder extends ReplayingDecoder<Void> {
    @Override
    protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {

        System.out.println("MyByteToLongDecoder2 被调用");
        //在 ReplayingDecoder 不需要判断数据是否足够读取,内部会进行处理判断
        out.add(in.readLong());
    }
}

ReplayingDecoder 使用方便,但它也有一些局限性:
1、并不是所有的 ByteBuf操作都被支持,如果调用了一个不被支持的方法,将会抛出一个UnsupportedOperationException。
2、ReplayingDecoder 在某些情况下可能稍慢于 ByteToMessageDecoder,例如网络缓慢并且消息格式复杂时,消息会被拆成了多个碎片,速度变慢。

2、其他编码器

LineBasedFrameDecoder:这个类在 Netty 内部也有使用,它使用行尾控制字符 (\n 或者\r\n)作为分隔符来解析数据。
DelimiterBasedFrameDecoder: 使用自定义的特殊字符作为消息的分隔符。
HttpObiectDecoder: 一个 HTTP 数据的解码器。
LengthFieldBasedFrameDecoder: 通过指定长度来标识整包消息,这样就可以自动的处理黏包和半包消息。

编码器与解码器都是成对出现的。

3、内置编解码器处理粘包拆包问题

Netty解决粘包和拆包问题的四种方案

四、自定义编解码器实现粘包拆包问题

Netty解决粘包拆包问题,Netty使用自定义编解码器解决粘包拆包问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/449513.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[LeetCode复盘] LCCUP‘23春季赛 20230422

[LeetCode复盘] LCCUP23春季赛 20230422 一、总结二、 1. 补给马车1. 题目描述2. 思路分析3. 代码实现 三、2. 探险营地1. 题目描述2. 思路分析3. 代码实现 四、 3. 最强祝福力场1. 题目描述2. 思路分析3. 代码实现 五、 4. 传送卷轴1. 题目描述2. 思路分析3. 代码实现 六、 5…

REDIS03_AOF概述、工作流程、写回策略、正常异常流程、重写机制、配置文件详解

文章目录 ①. AOF - 概述作用②. AOF - 工作流程③. 缓冲区 - 写回策略④. 配置文件说明(6 VS 7)⑤. 正常、异常恢复⑥. AOF - 优劣势⑦. AOF - 重写机制⑧. AOF优化配置项详解⑨. RBD和AOF共存模式 ①. AOF - 概述作用 ①. 官网介绍 ②. 以日志的形式来记录每个写操作,将Red…

解决RabbitMQ的The channelMax limit is reached. Try later.

The channelMax limit is reached. Try later.顾名思义就是channel达到数量限制 查看源码得出 大概意思就是&#xff1a; 默认最大通道数&#xff1b;2047&#xff0c;因为它在服务器端是第2048个&#xff0c;每个连接用于协商和错误通信。 也可以在rabbitmq的管控台看出 总结…

单页面与路由

目录 &#xff08;一&#xff09;什么是SPA应用&#xff1f; &#xff08;二&#xff09;路由 &#xff08;1&#xff09;什么是路由&#xff1f; &#xff08;2&#xff09;路由的分类 &#xff08;3&#xff09;路由的安装和使用 &#xff08;三&#xff09;、路由的使…

微服务 - 搭建Consul集群服务,Consul配置中心

传统配置文件的弊端 静态化配置&#xff0c;例如env文件配置文件无法区分环境配置文件过于分散历史版本无法查看 配置中心如何解决的呢?配置中心的思路是把项目中的配置参数全部放在一个集中的地方来管理&#xff0c;并提供一套标准的接口&#xff0c;当各个服务需要获取配置…

d2l 使用attention的seq2seq

这一章节与前面写好的function关联太大&#xff0c;建议看书P291. 这章节主要讲述了添加attention的seq2seq,且只在decoder里面添加&#xff0c;所以全文都在讲这个decoter 目录 1.训练 2.预测 1.训练 #save class AttentionDecoder(d2l.Decoder):"""带有注…

HTTP与HTTPS相关介绍(详细)

HTTP与HTTPS相关介绍 HTTP与HTTPS简述HTTPS和HTTP的区别主要如下HTTPS的工作原理前言工作步骤总结 HTTPS的缺点SSL与TLSSSL&#xff1a;TLS&#xff1a;TLS和SSL的关系 对称加密与非对称加密对称加密非对称加密 HTTP与HTTPS简述 超文本传输协议&#xff08;Hyper Text [Transf…

如何无侵入地引入第三方组件?

做java开发的小伙伴都知道&#xff0c;java的生态比较繁荣&#xff0c;有各种各样的第三方组件来满足我们日常的开发需求。很多常用的中间件(redis&#xff0c;kafka等)都提供java的开发接口&#xff0c;而且这些接口通常会被封装成比较好用的组件来满足我们使用这些中间件的场…

SpringBoot集成MyBatis-yml自动化配置原理详解

SpringBoot集成MyBatis-yml自动化配置原理详解 简介&#xff1a;spring boot整合mybatis开发web系统目前来说是市面上主流的框架&#xff0c;每个Java程序和springboot mybatis相处的时间可谓是比和自己女朋友相处的时间都多&#xff0c;但是springboot mybatis并没有得到你的真…

RabbitMQ--详情概述

一、消息队列(Rabbit Message Queue) 1、概念 消息队列是一种应用之间的通信方式&#xff0c;消息发送之后可以立即返回&#xff0c;由消息系统来确保消息的可靠传递。消息发布者只发布消息到MQ&#xff0c;消息使用者值从MQ中拿消息&#xff0c;两者不知道对方的存在。 简…

Sentinel——限流规则

目录 快速入门 簇点链路 案例 流控模式 流控模式——关联 流控模式——链路 案例 流控效果 流控效果——warm-up 流控效果——排队等待 热点参数限流 快速入门 簇点链路 簇点链路&#xff1a;就是项目内的调用链路&#xff0c;链路中被监控的每个接口就是一个资源。…

【故障检测】基于 KPCA 的故障检测【T2 和 Q 统计指数的可视化】(Matlab代码实现)

&#x1f4a5; &#x1f4a5; &#x1f49e; &#x1f49e; 欢迎来到本博客 ❤️ ❤️ &#x1f4a5; &#x1f4a5; &#x1f3c6; 博主优势&#xff1a; &#x1f31e; &#x1f31e; &#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 …

[前端基础]异步操作(还没写完)

1.写在前面 这篇是因为最近再写异步操作,需要点总结 因为还在学习前端的过程中嘛,所以有些东西可能会慢慢补充上来,也可能会有很多个人理解不是很到位的地方,还望各位评论区佬能帮忙指出.阿里嘎多捏 2.异步操作的概念和举例 异步操作和同步操作在408的三门课程中,都有所提及…

基于php的校园垃圾分类网站的设计与实现

摘要 近年来&#xff0c;随着民众环保意识的增强和资源有效利用问题的重视&#xff0c;全国各地市不断推进垃圾分类工作。教育部&#xff0c;也已于去年发布通知在全国各学校推进垃圾分类工作&#xff0c;以鼓励垃圾分类的有效实施。但现阶段我国校园的垃圾分类践行情况依旧问…

STATS 782 - Control Flow and Functions

文章目录 一、Control Flow1. If-Then-Else2. Loops 二、Functions1. Defining Functions2. 使用函数计算数学公式 总结 一、Control Flow 1. If-Then-Else > if (x > 0) y sqrt(x) else y -sqrt(-x)或 > y if (x > 0) sqrt(x) else -sqrt(-x)2. Loops ① fo…

数组应该怎么用?

文章目录 前言一、数组是什么&#xff1f;二、数组的创建1.数组的创建&#xff1a;2.数组的初始化 三.数组的遍历1.逐个打印2.使用for循环四.二维数组1.语法&#xff1a;2.遍历 五.数组的一些常用方法1.数组转换字符串2.数组拷贝3.二分查找4.冒泡排序5.数组逆序 总结 前言 为什…

动力节点Vue笔记——Vue与Ajax

四、Vue与AJAX 4.1 回顾发送AJAX异步请求的方式 发送AJAX异步请求的常见方式包括&#xff1a; 原生方式&#xff0c;使用浏览器内置的JS对象XMLHttpRequest const xhr new XMLHttpRequest()xhr.onreadystatechange function(){}xhr.open()xhr.send() 原生方式&#xff0…

_awt_container容器_演示

Component作为基类&#xff0c;提供了如下常用的方法来设置组件的大小、位置、可见性等。 方法签名方法功能setLocation(int x,int y)设置组件的位置setSize(int width,int heigth)设置组件的大小setBounds(int x,int y,int width,int heigth)设置组件的位置&#xff0c;大小。…

基于蚂蚁优化算法的BP神经网络在负荷预测中的应用研究(Matlab完整代码实现)

&#x1f4a5;&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️❤️&#x1f4a5;&#x1f4a5;&#x1f4a5; 目录 1 ACO-BP算法 2 ACO-BP算法基本思路 3 具体步骤 4 运行结果 ​ 5 参考文献 6 Matlab代码实现 1 ACO-BP算法 传统的…

数组模拟实现单链表快速操作

前言&#xff1a;我们都知道链表的一般模式是由结构体加指针来实现的&#xff0c;但是在实际的比赛中&#xff0c;结构体指针来实现链表的操作并不常用&#xff0c;原因是因为我们在增加节点时需要开辟新的内存&#xff0c;而比赛时给出的样例大多都是十几万个数据&#xff0c;…