【python数据可视化】基于networkx的10个绘图技巧

news2024/11/13 11:10:50

一、说明

        networkx在02年5月产生,是用python语言编写的软件包,便于用户对复杂网络进行创建、操作和学习。利用networkx可以以标准化和非标准化的数据格式存储网络、生成多种随机网络和经典网络、分析网络结构、建立网络模型、设计新的网络算法、进行网络绘制等。 ——百度百科

 

Gallery — NetworkX 3.1 documentation

二、简单图操作种种

2.1 简单的无向图

无向图和有向图的区别:在生成图的时候已经选定。

 

  • 效果图:

  • 代码示例 
import networkx as nx
import matplotlib.pyplot as plt

G = nx.Graph()
G.add_edge(1, 2)
G.add_edge(1, 3)
G.add_edge(1, 5)
G.add_edge(2, 3)
G.add_edge(3, 4)
G.add_edge(4, 5)

# explicitly set positions
pos = {1: (0, 0), 2: (-1, 0.3), 3: (2, 0.17), 4: (4, 0.255), 5: (5, 0.03)}

options = {
    "font_size": 36,
    "node_size": 3000,
    "node_color": "white",
    "edgecolors": "black",
    "linewidths": 5,
    "width": 5,
}
nx.draw_networkx(G, pos, **options)

# Set margins for the axes so that nodes aren't clipped
ax = plt.gca()
ax.margins(0.20)
plt.axis("off")
plt.show()

2.2 简单的有向图 

效果图:

G = nx.DiGraph([(0, 3), (1, 3), (2, 4), (3, 5), (3, 6), (4, 6), (5, 6)])

# group nodes by column
left_nodes = [0, 1, 2]
middle_nodes = [3, 4]
right_nodes = [5, 6]

# set the position according to column (x-coord)
pos = {n: (0, i) for i, n in enumerate(left_nodes)}
pos.update({n: (1, i + 0.5) for i, n in enumerate(middle_nodes)})
pos.update({n: (2, i + 0.5) for i, n in enumerate(right_nodes)})

nx.draw_networkx(G, pos, **options)

# Set margins for the axes so that nodes aren't clipped
ax = plt.gca()
ax.margins(0.20)
plt.axis("off")
plt.show()

2.3 二维网格grid图 和边数据读写

        重点语句:G = nx.grid_2d_graph(5, 5)

  • 图示意:

  • 代码示例 
import matplotlib.pyplot as plt
import networkx as nx

G = nx.grid_2d_graph(5, 5)  # 5x5 grid

# print the adjacency list
for line in nx.generate_adjlist(G):
    print(line)
# write edgelist to grid.edgelist
nx.write_edgelist(G, path="grid.edgelist", delimiter=":")
# read edgelist from grid.edgelist
H = nx.read_edgelist(path="grid.edgelist", delimiter=":")

pos = nx.spring_layout(H, seed=200)
nx.draw(H, pos)
plt.show()

2.4 环图

用户指定环的位置后画出:

代码

import matplotlib.pyplot as plt
import networkx as nx
import numpy as np

G = nx.path_graph(20)  # An example graph
center_node = 5  # Or any other node to be in the center
edge_nodes = set(G) - {center_node}
# Ensures the nodes around the circle are evenly distributed
pos = nx.circular_layout(G.subgraph(edge_nodes))
pos[center_node] = np.array([0, 0])  # manually specify node position
nx.draw(G, pos, with_labels=True)
plt.show()

2.5 全连接神经网络

示例图

 

示例代码 

import itertools
import matplotlib.pyplot as plt
import networkx as nx

subset_sizes = [5, 5, 4, 3, 2, 4, 4, 3]
subset_color = [
    "gold",
    "violet",
    "violet",
    "violet",
    "violet",
    "limegreen",
    "limegreen",
    "darkorange",
]


def multilayered_graph(*subset_sizes):
    extents = nx.utils.pairwise(itertools.accumulate((0,) + subset_sizes))
    layers = [range(start, end) for start, end in extents]
    G = nx.Graph()
    for i, layer in enumerate(layers):
        G.add_nodes_from(layer, layer=i)
    for layer1, layer2 in nx.utils.pairwise(layers):
        G.add_edges_from(itertools.product(layer1, layer2))
    return G


G = multilayered_graph(*subset_sizes)
color = [subset_color[data["layer"]] for v, data in G.nodes(data=True)]
pos = nx.multipartite_layout(G, subset_key="layer")
plt.figure(figsize=(8, 8))
nx.draw(G, pos, node_color=color, with_labels=False)
plt.axis("equal")
plt.show()

2.6  分布直方图-度秩图-连同子图

        此示例展示了使用两种常用技术可视化节点度分布的几种方法:度秩图和度直方图。

在此示例中,生成了一个包含 100 个节点的随机图。确定每个节点的度数,并生成一个显示三件事的图形:1. 连通分量的子图 2. 图的度秩图,以及 3. 度直方图

import networkx as nx
import numpy as np
import matplotlib.pyplot as plt

G = nx.gnp_random_graph(100, 0.02, seed=10374196)

degree_sequence = sorted((d for n, d in G.degree()), reverse=True)
dmax = max(degree_sequence)

fig = plt.figure("Degree of a random graph", figsize=(8, 8))
# Create a gridspec for adding subplots of different sizes
axgrid = fig.add_gridspec(5, 4)

ax0 = fig.add_subplot(axgrid[0:3, :])
Gcc = G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])
pos = nx.spring_layout(Gcc, seed=10396953)
nx.draw_networkx_nodes(Gcc, pos, ax=ax0, node_size=20)
nx.draw_networkx_edges(Gcc, pos, ax=ax0, alpha=0.4)
ax0.set_title("Connected components of G")
ax0.set_axis_off()

ax1 = fig.add_subplot(axgrid[3:, :2])
ax1.plot(degree_sequence, "b-", marker="o")
ax1.set_title("Degree Rank Plot")
ax1.set_ylabel("Degree")
ax1.set_xlabel("Rank")

ax2 = fig.add_subplot(axgrid[3:, 2:])
ax2.bar(*np.unique(degree_sequence, return_counts=True))
ax2.set_title("Degree histogram")
ax2.set_xlabel("Degree")
ax2.set_ylabel("# of Nodes")

fig.tight_layout()
plt.show()

2.7 随机生成

 

import matplotlib as mpl
import matplotlib.pyplot as plt
import networkx as nx

seed = 13648  # Seed random number generators for reproducibility
G = nx.random_k_out_graph(10, 3, 0.5, seed=seed)
pos = nx.spring_layout(G, seed=seed)

node_sizes = [3 + 10 * i for i in range(len(G))]
M = G.number_of_edges()
edge_colors = range(2, M + 2)
edge_alphas = [(5 + i) / (M + 4) for i in range(M)]
cmap = plt.cm.plasma

nodes = nx.draw_networkx_nodes(G, pos, node_size=node_sizes, node_color="indigo")
edges = nx.draw_networkx_edges(
    G,
    pos,
    node_size=node_sizes,
    arrowstyle="->",
    arrowsize=10,
    edge_color=edge_colors,
    edge_cmap=cmap,
    width=2,
)
# set alpha value for each edge
for i in range(M):
    edges[i].set_alpha(edge_alphas[i])

pc = mpl.collections.PatchCollection(edges, cmap=cmap)
pc.set_array(edge_colors)

ax = plt.gca()
ax.set_axis_off()
plt.colorbar(pc, ax=ax)
plt.show()

2.8 渐变颜色化 

 颜色渐变的边

 

 代码

import matplotlib.pyplot as plt
import networkx as nx

G = nx.star_graph(20)
pos = nx.spring_layout(G, seed=63)  # Seed layout for reproducibility
colors = range(20)
options = {
    "node_color": "#A0CBE2",
    "edge_color": colors,
    "width": 4,
    "edge_cmap": plt.cm.Blues,
    "with_labels": False,
}
nx.draw(G, pos, **options)
plt.show()

 颜色渐变的节点

import matplotlib.pyplot as plt
import networkx as nx

G = nx.cycle_graph(24)
pos = nx.spring_layout(G, iterations=200)
nx.draw(G, pos, node_color=range(24), node_size=800, cmap=plt.cm.Blues)
plt.show()

2.9 Barabási-Albert 网络

        使用 NetworkX ego_graph() 函数返回 Barabási-Albert 网络中最大枢纽的主要 egonet 的示例。

from operator import itemgetter

import matplotlib.pyplot as plt
import networkx as nx

# Create a BA model graph - use seed for reproducibility
n = 1000
m = 2
seed = 20532
G = nx.barabasi_albert_graph(n, m, seed=seed)

# find node with largest degree
node_and_degree = G.degree()
(largest_hub, degree) = sorted(node_and_degree, key=itemgetter(1))[-1]

# Create ego graph of main hub
hub_ego = nx.ego_graph(G, largest_hub)

# Draw graph
pos = nx.spring_layout(hub_ego, seed=seed)  # Seed layout for reproducibility
nx.draw(hub_ego, pos, node_color="b", node_size=50, with_labels=False)

# Draw ego as large and red
options = {"node_size": 300, "node_color": "r"}
nx.draw_networkx_nodes(hub_ego, pos, nodelist=[largest_hub], **options)
plt.show()

2.10 创建一个 G{n,m} 随机图并计算特征值。

 

import matplotlib.pyplot as plt
import networkx as nx
import numpy.linalg

n = 1000  # 1000 nodes
m = 5000  # 5000 edges
G = nx.gnm_random_graph(n, m, seed=5040)  # Seed for reproducibility

L = nx.normalized_laplacian_matrix(G)
e = numpy.linalg.eigvals(L.toarray())
print("Largest eigenvalue:", max(e))
print("Smallest eigenvalue:", min(e))
plt.hist(e, bins=100)  # histogram with 100 bins
plt.xlim(0, 2)  # eigenvalues between 0 and 2
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/448838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决java.lang.IllegalStateException: Failed to load ApplicationContext错误~

错误描述: Caused by: org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: file [D:\SSM\SSM_3.22\spring_transaction\target\classes\spring_txAnnotation\Controller\BookController.class]; nested …

装饰器模式C++用法示例

六.装饰器模式 一.装饰器模式1.原理2.适用场景 二.C程序示例1.语法组成2.C示例 一.装饰器模式 1.原理 装饰器模式是一种结构性设计模式,其目的是通过包装对象来扩展其行为而不改变其接口。该模式可以动态地将责任附加到对象上,从而提供一种灵活的替代方…

SQL Server基础 第三章 数据表基本操作(增删改查,不允许保存更改异常!)

往表里插数据我们现在有两种方式第一种是编辑直接修改,第二种是通过查询来修改数据 两种方法的区别 第一种更直接,如果数据量小那么直接改就好了,那如果数据量稍微庞大我们就需要用新建查询来进行表内容的修改了!!&a…

【Linux】进程信号 --- 信号的产生 保存 捕捉递达

被爱情困住的是傻子 文章目录 一、信号的预备知识1.通过生活例子来理解信号2.迁移到进程上来理解信号 二、信号的发送(修改PCB的信号位图)1.通过键盘发送信号(kill指令 和 热键)2.通过系统调用发送信号(kill系统调用 和…

前端技术的miniui 和bootstartp

前端技术的miniui 和bootstartp 目录概述需求: 设计思路实现思路分析1.前端技术boostatrp2.miniui: 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better re…

1686_MATLAB处理Excel文件

全部学习汇总: GreyZhang/g_matlab: MATLAB once used to be my daily tool. After many years when I go back and read my old learning notes I felt maybe I still need it in the future. So, start this repo to keep some of my old learning notes servral …

opencv交叉编译,支持ffmpeg、libjpeg,实现取流及写入jpeg文件

一、准备工作 1、虚拟机交叉编译连 2、在虚拟机目录下创建工作目录,注意不要选择windows共享目录,比如这里选择: /home/cxyazhou/work 3、虚拟机安装cmake cmake-gui pkg-config,直接apt install即可 4、源码下载,需要…

Mongodb的部署

MongoDB下载包获取 https://www.mongodb.com/try/download/community 安装配置 第一步:在服务器 /usr/local 下创建 MongoDB 文件夹,用来存放安装包、服务以及之后 MongoDB 的数据库和日志文件。 cd /usr/local // 进入安装目录 mkdir MongoDB // 创…

【LeetCode: 2369. 检查数组是否存在有效划分 | 暴力递归=>记忆化搜索=>动态规划 | 线性dp】

🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…

OpenCV(14)-OpenCV4.0中文文档学习2(补充)

相机校准和3D重建 相机校准 标定 findChessboardCorners() 它返回角点和阈值,如果成功找到所有角点,则返回 True。这些角落将按顺序放置(从左到右,从上到下)cornerSubPix()用以寻找图案,找到角点后也可以…

PHREEQC实践建模技术方法

PHREEQC软件为美国地质调查局基于C和C语言开发,面向一般地球化学、水文地球化学模拟的专业软件。该软件历经近30年迭代,功能不断完善,目前已发展成为-以PHREEQC为计算核心(更新至3.7版本),辅以具备二次开发…

【无标题】docker安装jenkins安装流程(二)

配置Publish Over SSH JENKINS_URL/job/goods/build?tokenTOKEN_NAME http://xxxxx:8001/job/goods/job/goods/build?tokenxql1232.提交合并代码触发自动构建 http://xxxxx:8001/buildByToken/build?jobgoods&tokenxql123http://xxxxx:8001/buildByToken/build?jobgood…

Javaee 基于注解的AOP开发

基于注解的 aop 开发步骤: 1. 创建目标接口和目标类(内部有切点) 2. 创建切面类(内部有增强方法) 3. 将目标类和切面类的对象创建权交给 spring 4. 在切面类中使用注解配置织入关系 5. 在配置文件中开启组件…

gpt写文章批量写文章-gpt3中文生成教程

怎么用gpt写文章批量写文章 批量写作文章是很多网站、营销人员、编辑等需要的重要任务,GPT可以帮助您快速生成大量自然、通顺的文章。下面是一个简单的步骤介绍,告诉您如何使用GPT批量写作文章。 步骤1:选择好训练模型 首先,选…

14、RPC与gRPC

目录 一、rpc基础1 - rpc入门2 - 基础的rpc通信3 - 基于接口的RPC服务 二、rpc编码1 - gob编码2 - json on tcp3 - json on http(待补充) 三、prtotobuf编码1 - prtotobuf概述2 - protobuf编译器3 - 序列化和反序列化4 - 基于protobuf的RPC(待…

TiDB实战篇-TiCDC

目录 简介 原理 使用场景 使用限制 硬件配置 部署 在安装TiDB的时候部署 扩容部署 操作 管理CDC 管理工具 查看状态 创建同步任务 公共参数 CDC任务同步到MySQL实战 同步命令 查看所有的同步任务 同步任务的状态 管理同步任务 查看一个同步信息的具体情况 …

腾讯云COS+ElmentUI+SpringBoot视频上传功能实现

文章目录 第一步:选择合适的组件并整合到项目中第二步:前端校验第三步:绑定上传成功方法第四步:腾讯云cos后端接口配置 今天在做项目的时候需要完成一个视频上传的功能,这里做一个记录! 第一步:…

春秋云境:CVE-2022-25411(Maxsite CMS文件上传漏洞)

目录 一、题目 二、官方POC 一、题目 介绍: MaxSite CMS是俄国MaxSite CMS开源项目的一款网站内容管理系统 Maxsite CMS存在文件上传漏洞,攻击者可利用该漏洞通过精心制作的PHP文件执行任意代码。 进入题目: 发现是俄文 乌拉~~ 不过没…

MongoDB副本集

一、介绍 MongoDB副本集(Replica set)是一组MongoDB实例,它们都维护着相同的数据集合。MongoDB副本集是有自动故障恢复功能的主从集群,有一个Primary节点和一个或多个Secondary节点组成。副本集没有固定的主节点,当主节点发生故障时整个集群会选举一个主节点为系统提供服务…

6.S081——Lab3——page table

0.briefly speaking 这是6.S081 Fall 2021的第三个实验,是页表和虚拟内存相关的实验,在之前我们已经详细地阅读了Xv6内核中有关虚拟内存管理的源代码,现在就可以深入一下这个实验了。本实验分为如下三个小任务: Speed up system…