目录
127. 单词接龙 Word Ladder 🌟🌟🌟
128. 最长连续序列 Longest Consecutive Sequence 🌟🌟
129. 求根节点到叶节点数字之和 Sum Root-to-leaf Numbers 🌟🌟
🌟 每日一练刷题专栏 🌟
Golang每日一练 专栏
Python每日一练 专栏
C/C++每日一练 专栏
Java每日一练 专栏
127. 单词接龙 Word Ladder
字典 wordList
中从单词 beginWord
和 endWord
的 转换序列 是一个按下述规格形成的序列 beginWord -> s1 -> s2 -> ... -> sk
:
- 每一对相邻的单词只差一个字母。
- 对于
1 <= i <= k
时,每个si
都在wordList
中。注意,beginWord
不需要在wordList
中。 sk == endWord
给你两个单词 beginWord
和 endWord
和一个字典 wordList
,返回 从 beginWord
到 endWord
的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0
。
示例 1:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"] 输出:5 解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。
示例 2:
输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"] 输出:0 解释:endWord "cog" 不在字典中,所以无法进行转换。
提示:
1 <= beginWord.length <= 10
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWord
、endWord
和wordList[i]
由小写英文字母组成beginWord != endWord
wordList
中的所有字符串 互不相同
相关:
126. 单词接龙 II Word Ladder II 🌟🌟🌟
代码1: BFS
package main
import (
"fmt"
)
func ladderLength(beginWord string, endWord string, wordList []string) int {
wordSet := make(map[string]bool) // 存储单词表中的单词,用于删除操作
for _, word := range wordList {
wordSet[word] = true
}
if !wordSet[endWord] {
return 0 // 单词表中不包含结束单词,无法进行转换
}
visited := make(map[string]bool) // 存储已访问过的单词
visited[beginWord] = true
queue := []string{beginWord} // 存储待遍历的节点
level := 1 // 存储当前节点所处的层数,即转换序列的长度
for len(queue) > 0 {
size := len(queue)
for i := 0; i < size; i++ {
currWord := queue[0]
queue = queue[1:]
if currWord == endWord {
return level // 找到了最短路径,返回转换序列的长度
}
for _, nextWord := range getNextWords(currWord, wordSet) {
if !visited[nextWord] {
visited[nextWord] = true
queue = append(queue, nextWord)
}
}
}
level++ // 当前层的所有节点遍历完后,转换序列长度加 1
}
return 0 // 无法进行转换
}
// 获取与当前单词相差一个字母的单词列表
func getNextWords(word string, wordSet map[string]bool) []string {
words := make([]string, 0)
for i := 0; i < len(word); i++ {
for j := 'a'; j <= 'z'; j++ {
if byte(j) == word[i] {
continue // 将当前字母跳过,避免重复
}
newWord := word[:i] + string(j) + word[i+1:]
if wordSet[newWord] {
words = append(words, newWord)
delete(wordSet, newWord) // 将该单词从单词表中删除,避免重复遍历
}
}
}
return words
}
func main() {
beginWord, endWord := "hit", "cog"
wordList := []string{"hot", "dot", "dog", "lot", "log", "cog"}
fmt.Println(ladderLength(beginWord, endWord, wordList))
wordList = []string{"hot", "dot", "dog", "lot", "log"}
fmt.Println(ladderLength(beginWord, endWord, wordList))
}
代码2: 双向 BFS
package main
import (
"fmt"
)
func ladderLength(beginWord string, endWord string, wordList []string) int {
wordSet := make(map[string]bool) // 存储单词表中的单词,用于删除操作
for _, word := range wordList {
wordSet[word] = true
}
if !wordSet[endWord] {
return 0 // 单词表中不包含结束单词,无法进行转换
}
visited := make(map[string]bool) // 存储已访问过的单词
visited[beginWord] = true
visited[endWord] = true
queue1 := []string{beginWord} // 存储起点开始的待遍历节点
queue2 := []string{endWord} // 存储终点开始的待遍历节点
level := 1 // 存储当前节点所处的层数,即转换序列的长度
for len(queue1) > 0 && len(queue2) > 0 {
if len(queue1) > len(queue2) {
queue1, queue2 = queue2, queue1 // 交换两个队列,保证 queue1 中的节点数目少于等于 queue2 中的节点数目
}
size := len(queue1)
for i := 0; i < size; i++ {
currWord := queue1[0]
queue1 = queue1[1:]
for _, nextWord := range getNextWords(currWord, wordSet) {
if visited[nextWord] { // 如果从另一个方向已经访问过该节点,说明两个搜索相遇了,找到了最短路径
return level + 1
}
if !visited[nextWord] {
visited[nextWord] = true
queue1 = append(queue1, nextWord)
}
}
}
level++ // 当前层的所有节点遍历完后,转换序列长度加 1
}
return 0 // 无法进行转换
}
// 获取与当前单词相差一个字母的单词列表
func getNextWords(word string, wordSet map[string]bool) []string {
words := make([]string, 0)
for i := 0; i < len(word); i++ {
for j := 'a'; j <= 'z'; j++ {
if byte(j) == word[i] {
continue // 将当前字母跳过,避免重复
}
newWord := word[:i] + string(j) + word[i+1:]
if wordSet[newWord] {
words = append(words, newWord)
delete(wordSet, newWord) // 将该单词从单词表中删除,避免重复遍历
}
}
}
return words
}
func main() {
beginWord, endWord := "hit", "cog"
wordList := []string{"hot", "dot", "dog", "lot", "log", "cog"}
fmt.Println(ladderLength(beginWord, endWord, wordList))
wordList = []string{"hot", "dot", "dog", "lot", "log"}
fmt.Println(ladderLength(beginWord, endWord, wordList))
}
输出:
5
0
代码3: 用126题的结果遍历出最大长度
package main
import (
"fmt"
)
func ladderLength(beginWord string, endWord string, wordList []string) int {
res := 0
for _, arr := range findLadders(beginWord, endWord, wordList) {
size := len(arr)
if res < size {
res = len(arr)
}
}
return res
}
func findLadders(beginWord string, endWord string, wordList []string) [][]string {
result, wordMap := make([][]string, 0), make(map[string]bool)
for _, w := range wordList {
wordMap[w] = true
}
if !wordMap[endWord] {
return result
}
queue := make([][]string, 0)
queue = append(queue, []string{beginWord})
queueLen := 1
levelMap := make(map[string]bool)
for len(queue) > 0 {
path := queue[0]
queue = queue[1:]
lastWord := path[len(path)-1]
for i := 0; i < len(lastWord); i++ {
for c := 'a'; c <= 'z'; c++ {
nextWord := lastWord[:i] + string(c) + lastWord[i+1:]
if nextWord == endWord {
path = append(path, endWord)
result = append(result, path)
continue
}
if wordMap[nextWord] {
levelMap[nextWord] = true
newPath := make([]string, len(path))
copy(newPath, path)
newPath = append(newPath, nextWord)
queue = append(queue, newPath)
}
}
}
queueLen--
if queueLen == 0 {
if len(result) > 0 {
break
}
for k := range levelMap {
delete(wordMap, k)
}
levelMap = make(map[string]bool)
queueLen = len(queue)
}
}
return result
}
func main() {
beginWord, endWord := "hit", "cog"
wordList := []string{"hot", "dot", "dog", "lot", "log", "cog"}
fmt.Println(ladderLength(beginWord, endWord, wordList))
wordList = []string{"hot", "dot", "dog", "lot", "log"}
fmt.Println(ladderLength(beginWord, endWord, wordList))
}
128. 最长连续序列 Longest Consecutive Sequence
给定一个未排序的整数数组 nums
,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n)
的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2] 输出:4 解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1] 输出:9
提示:
0 <= nums.length <= 10^5
-10^9 <= nums[i] <= 10^9
代码1:
package main
import (
"fmt"
)
func longestConsecutive(nums []int) int {
numSet := map[int]bool{}
for _, num := range nums {
numSet[num] = true
}
longestStreak := 0
for num := range numSet {
if !numSet[num-1] {
currentNum := num
currentStreak := 1
for numSet[currentNum+1] {
currentNum++
currentStreak++
}
if currentStreak > longestStreak {
longestStreak = currentStreak
}
}
}
return longestStreak
}
func main() {
nums := []int{100, 4, 200, 1, 3, 2}
fmt.Println(longestConsecutive(nums))
nums = []int{0, 3, 7, 2, 5, 8, 4, 6, 0, 1}
fmt.Println(longestConsecutive(nums))
}
输出:
4
9
代码2:
package main
import (
"fmt"
"sort"
)
func longestConsecutive(nums []int) int {
n := len(nums)
if n == 0 {
return 0
}
sort.Ints(nums)
maxLength, currentLength := 1, 1
for i := 1; i < n; i++ {
if nums[i] != nums[i-1] {
if nums[i] == nums[i-1]+1 {
currentLength++
} else {
if maxLength < currentLength {
maxLength = currentLength
}
currentLength = 1
}
}
}
if maxLength < currentLength {
maxLength = currentLength
}
return maxLength
}
func main() {
nums := []int{100, 4, 200, 1, 3, 2}
fmt.Println(longestConsecutive(nums))
nums = []int{0, 3, 7, 2, 5, 8, 4, 6, 0, 1}
fmt.Println(longestConsecutive(nums))
}
129. 求根节点到叶节点数字之和 Sum Root-to-leaf Numbers
给你一个二叉树的根节点 root
,树中每个节点都存放有一个 0
到 9
之间的数字。
每条从根节点到叶节点的路径都代表一个数字:
- 例如,从根节点到叶节点的路径
1 -> 2 -> 3
表示数字123
。
计算从根节点到叶节点生成的 所有数字之和 。
叶节点 是指没有子节点的节点。
示例 1:
输入:root = [1,2,3] 输出:25 解释: 从根到叶子节点路径 1->2 代表数字 12 从根到叶子节点路径 1->3 代表数字 13 因此,数字总和 = 12 + 13 = 25
示例 2:
输入:root = [4,9,0,5,1] 输出:1026 解释: 从根到叶子节点路径 4->9->5 代表数字 495 从根到叶子节点路径 4->9->1 代表数字 491 从根到叶子节点路径 4->0 代表数字 40 因此,数字总和 = 495 + 491 + 40 = 1026
提示:
- 树中节点的数目在范围
[1, 1000]
内 0 <= Node.val <= 9
- 树的深度不超过
10
代码1: DFS
package main
import (
"fmt"
)
const null = -1 << 31
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func sumNumbers(root *TreeNode) int {
if root == nil {
return 0
}
stack := []*TreeNode{root}
res := 0
for len(stack) > 0 {
node := stack[len(stack)-1]
stack = stack[:len(stack)-1]
if node.Left == nil && node.Right == nil {
res += node.Val
continue
}
if node.Right != nil {
node.Right.Val += node.Val * 10
stack = append(stack, node.Right)
}
if node.Left != nil {
node.Left.Val += node.Val * 10
stack = append(stack, node.Left)
}
}
return res
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func main() {
nums := []int{1, 2, 3}
root := buildTree(nums)
fmt.Println(sumNumbers(root))
nums = []int{4, 9, 0, 5, 1}
root = buildTree(nums)
fmt.Println(sumNumbers(root))
}
输出:
25
1026
代码2: 递归
package main
import (
"fmt"
)
const null = -1 << 31
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func sumNumbers(root *TreeNode) int {
return dfs(root, 0)
}
func dfs(root *TreeNode, prevSum int) int {
if root == nil {
return 0
}
sum := prevSum*10 + root.Val
if root.Left == nil && root.Right == nil {
return sum
}
return dfs(root.Left, sum) + dfs(root.Right, sum)
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func main() {
nums := []int{1, 2, 3}
root := buildTree(nums)
fmt.Println(sumNumbers(root))
nums = []int{4, 9, 0, 5, 1}
root = buildTree(nums)
fmt.Println(sumNumbers(root))
}
代码3: binaryTreePaths()结果求和,相关题目:
112. 路径总和 Path Sum 🌟
113. 路径总和 II Path Sum II 🌟🌟
package main
import (
"fmt"
)
const null = -1 << 31
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
func sumNumbers(root *TreeNode) int {
toNum := func(arr []int) int {
num, base := 0, 1
for i := len(arr) - 1; i >= 0; i-- {
num += arr[i] * base
base *= 10
}
return num
}
res := 0
for _, path := range binaryTreePaths(root) {
res += toNum(path)
}
return res
}
func binaryTreePaths(root *TreeNode) [][]int {
res := [][]int{}
if root == nil {
return res
}
if root.Left == nil && root.Right == nil {
return [][]int{{root.Val}}
}
leftPaths := binaryTreePaths(root.Left)
rightPaths := binaryTreePaths(root.Right)
paths := make([][]int, 0)
for _, path := range leftPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
for _, path := range rightPaths {
paths = append(paths, append([]int{root.Val}, path...))
}
return paths
}
func buildTree(nums []int) *TreeNode {
if len(nums) == 0 {
return nil
}
root := &TreeNode{Val: nums[0]}
Queue := []*TreeNode{root}
idx := 1
for idx < len(nums) {
node := Queue[0]
Queue = Queue[1:]
if nums[idx] != null {
node.Left = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Left)
}
idx++
if idx < len(nums) && nums[idx] != null {
node.Right = &TreeNode{Val: nums[idx]}
Queue = append(Queue, node.Right)
}
idx++
}
return root
}
func main() {
nums := []int{1, 2, 3}
root := buildTree(nums)
fmt.Println(sumNumbers(root))
nums = []int{4, 9, 0, 5, 1}
root = buildTree(nums)
fmt.Println(sumNumbers(root))
}
🌟 每日一练刷题专栏 🌟
✨ 持续,努力奋斗做强刷题搬运工!
👍 点赞,你的认可是我坚持的动力!
🌟 收藏,你的青睐是我努力的方向!
✎ 评论,你的意见是我进步的财富!
☸ 主页:https://hannyang.blog.csdn.net/
Golang每日一练 专栏 | |
Python每日一练 专栏 | |
C/C++每日一练 专栏 | |
Java每日一练 专栏 |