C++基础知识
- 前言
- 1. C++关键字
- 2. 命名空间namespace
- 命名空间的创建
- 命名空间的使用
- 命名空间的注意事项
- 3. C++输入&输出
- 4. 缺省参数
- 概念
- 分类
- 全缺省参数
- 半缺省参数
- 5. 函数重载
- 概念
- 实现
- C++为什么能进行函数重载
- C++和C的相互调用(可以不用看)
- 6. 引用
- 概念
- 注意事项
- 常引用
- 使用场景
- 引用做返回值的骚操作
- 传值、传引用效率比较
- 引用传参做输入型参数
- 引用和指针的区别
- 7. 内联函数
- 概念
- 8. auto关键字(C++11)
- 类型别名思考
- auto简介
- auto的使用细则
- auto不能推导的场景
- 9. 基于范围的for循环(C++11)
- 范围for的语法
- 范围for的使用条件
- 10. 指针空值---nullptr(C++11)
前言
C++是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式等。熟悉C语言之后,对C++学习有一定的帮助。
这些概念性的文字,估计对于新手来说是听不懂的,那么就不多说那么多废话了,开整。
1. C++关键字
C++总计63个关键字,C语言32个关键字
下面我们只是看一下C++有多少关键字,不对关键字进行具体的讲解。后面我们学到以后再细讲。
因为C++是兼容C的,所以可以看到这里面有些关键字在C语言阶段就已经学了。
2. 命名空间namespace
可能有的同学学了好长时间C++了,也不知道using namespace std;是在干嘛。
在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将都存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化,以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。
当我生成解决方案时,发生了问题,原因是rand是iostream里面的一个函数,当我定义了一个rand变量时就会发生冲突。
但是如果坚持要用rand这个变量的话,就不能在全局作用域里面创建这个变量,要么在函数内部创建一个局部变量,要么在全局中创建一个命名空间:
命名空间的创建
命名空间的使用
三种用法:
命名空间名称::变量名称
使用using将命名空间中某个成员引入
使用using namespace 命名空间名称 引入
但是可以看到只有第一种能够正常使用rand变量,而第二种和第三种还是会冲突。
标准库的东西都是放在std中的,以后我们做项目的时候尽量不要直接用using namespace std; 这是一个不好的习惯,可能会导致冲突。尽量指定命名空间访问或者展开常用的。就是第一种和第二种。
第一种的话是某一个操作不会重复很多次,就用第一种方式(看不懂没关系,留个印象就好):
如果某一个操作会重复很多次就用第二种:
直接用下面这种就可以:
命名空间的注意事项
- 命名空间中不仅可以有变量
namespace N
{
// 命名空间中可以定义变量/函数/类型
int rand = 10;
int Add(int left, int right)
{
return left + right;
}
struct Node
{
struct Node* next;
int val;
};
}
- 命名空间可以嵌套
namespace N1
{
int a;
int b;
int Add(int left, int right)
{
return left + right;
}
namespace N2
{
int c;
int d;
int Sub(int left, int right)
{
return left - right;
}
}
}
- 同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
上面的第二个注意事项中的N1如果和下面的N1定义在了不同的文件中(.h 和 .cpp)那么就会合并成为一个N1。
namespace N1
{
int Mul(int left, int right)
{
return left * right;
}
}
3. C++输入&输出
C++里面对cin和cout稍微做了优化,我们在输入和输出的时候不需要再指定对应的变量类型了。printf和scanf在C++中还是可以用的。
例子:
#include <iostream>
using namespace std;
int main()
{
int a;
double b;
char c;
// 可以自动识别变量的类型
cin>>a;
cin>>b>>c;
cout<<a<<endl;//endl就相当于是'\n'换行
cout<<b<<" "<<c<<endl;
return 0;
}
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}
几点注意事项:
- 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
- cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< iostream >头文件中。
- <<是流插入运算符,>>是流提取运算符。
- 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型。
- 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识,这些知识我们我们后续才会学习,所以我们这里只是简单学习他们的使用。
早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应
头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间,规定C++头文件不带.h;旧编译器(vc 6.0)中还支持<iostream.h>格式,后续编译器已不支持,因此推荐使用<iostream>+std的方式。
4. 缺省参数
概念
缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。
简单例子:
void Func(int a = 0)
{
cout<<a<<endl;
}
int main()
{
Func(); // 没有传参时,使用参数的默认值
Func(10); // 传参时,使用指定的实参
return 0;
}
分类
全缺省参数
void Func(int a = 10, int b = 20, int c = 30)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
半缺省参数
void Func(int a, int b = 10, int c = 20)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}
- 半缺省参数必须从右往左依次来给出,不能间隔着给。当某一个参数缺省了时,其右边的所有参数都要缺省。
- 缺省参数不能在函数声明和定义中同时出现。
例子:
如果生命与定义位置同时出现,恰巧两个位置提供的值不同,那编译器就无法确定到底该用那个缺省值。同时出现那就会报错。
当声明出现缺省参数而定义没有缺省参数的时候,程序会正常运行。
当声明没有缺省参数而定义有缺省参数的时候,也会报错:
- 缺省值必须是常量或者全局变量
- C语言不支持(编译器不支持)
5. 函数重载
概念
函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。
实现
三种方式:
参数类型不同
int Add(int left, int right)
{
cout << "int Add(int left, int right)" << endl;
return left + right;
}
double Add(double left, double right)
{
cout << "double Add(double left, double right)" << endl;
return left + right;
}
参数个数不同
void f()
{
cout << "f()" << endl;
}
void f(int a)
{
cout << "f(int a)" << endl;
}
参数类型顺序不同
void f(int a, char b)
{
cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
cout << "f(char b, int a)" << endl;
}
注意: 函数返回值不能作为函数重载的条件
C++为什么能进行函数重载
名字修饰。
在生成可执行程序前,要经过预编译->编译->汇编->链接这几个阶段。这个在我前面的这篇博客中也讲过了,我这里就不细说了。想了解一下的点这个链接:c程序环境和预处理
我就挑重要的讲一下,在编译时会进行符号汇总,就是把程序每个文件中的全局类型的数据进行记录(名字和对应的地址(如果某个符号只有声明的话,所记录的地址是无效的))。然后汇编时每个文件会形成对应的符号表,就是将前一步编译时的符号打包形成一个表格。然后链接阶段就将这些所有的文件的符号表合并,并将本来无效的地址所对应的符号进行搜索,找与之相同的具有有效地址的符号。并将拥有有效地址的符号替换掉无效地址的符号。
而C语言编译器在形成符号的时候,函数所形成的符号就是它名字本身,没有外加任何修饰,但是C++编译器在形成符号的时候会将函数的名字修饰一下。
在linux环境下,C++修饰函数的符号时会在函数名字后面添加上对应参数类型的首字母。
在windows环境下,C++修饰函数的符号相对复杂一些。但是道理是一样的,目的就是能够区分同名的函数。
我们这里给个例子:
同样的代码,汇编文件中函数所形成的符号不一样。
int Add(int x, int y)
{
return x + y;
}
void func(int a, double b, int* p)
{}
C语言中
C++中
通过这里就理解了C语言没办法支持重载,因为同名函数没办法区分。而C++是通过函数修饰规则来区分,只要参数不同,修饰出来的名字就不一样,就支持了重载。
C++和C的相互调用(可以不用看)
C++程序可以调用C++写的库,C程序可以调用C写的库。
但是C++程序也可以调用C写的库,C也可以调用C++写的库。
我们分别用C++和C来实现一下栈的基本操作。并生成对应的.lib文件。
用C写的栈
用C++写的栈
两个代码都写完后,改变一下二者的配置类型,不让他们生成.exe的可执行文件,改为生成静态库的.lib文件。
然后进入属性修改配置类型
再生成解决方案,然后这一步就完成了。
然后再创建对应的.c文件和.cpp文件
进去之后先改属性
C++ 调用 C库
然后引头文件
extern "C"是为了让cpp用c定义的函数
然后就OK了C 调用 C++库
然后引头文件
这里没有用到extern"C"因为C程序不认识这句话。得要在C++程序中用。
然后就OK了。
6. 引用
概念
在语法层面讲:引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。
比如说:你本名叫做王五,家里人给你叫狗蛋,你同学给你起外号叫小王,等等。您可以有很多个别名,但指的都是你一个人。
用法:类型& 引用变量名(对象名) = 引用实体;
void TestRef()
{
int a = 10;
int& ra = a;//<====定义引用类型
printf("%p\n", &a);
printf("%p\n", &ra);
}
别名改,本身也改,本身该,别名也改。
别名和本身的地址是一样的。
引用类型必须和引用实体是同种类型的。
注意事项
- 引用在定义时必须初始化
- 一个变量可以有多个引用
- 引用一旦引用一个实体,再不能引用其他实体
常引用
void TestConstRef()
{
const int a = 10;
//int& ra = a; // 该语句编译时会出错,a为常量,权限不能被放大
//你本来的目的是不能修改a的,但是第二条语可以通过ra来修改a,这样就不对了
const int& ra = a;
// int& b = 10; // 该语句编译时会出错,10为常量,不能被修改
const int& b = 10;
double d = 12.34;
const double& dd = d;//权限可以被缩小
//int& rd = d; // 该语句编译时会出错,类型不同
const int& rd = d;
}
使用场景
做参数
void Swap(int& left, int& right)
{
int temp = left;
left = right;
right = temp;
}
这里做参数,做的是输出型参数。
输出型参数:形参可以修改实参。
输入性参数:形参不能修改实参。
做返回值
int& Count()
{
static int n = 0;
n++;
// ...
return n;
}
看个例子:
int& Add(int a, int b)
{
int c = a + b;
return c;
}
int main()
{
int& ret = Add(1, 2);
Add(3, 4);
cout << "Add(1, 2) is :" << ret << endl;
return 0;
}
这里的结果是7,原因如下:
如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统,堆区的或者静态区的),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。
返回局部变量的几个例子:
值返回值接收
打印几次值都是10,因为ret没有被修改。
值返回引用接收
没法改,返回值是一份临时拷贝,临时拷贝具有常属性,只能用const接收。
引用返回值接收
这里虽然返回了局部变量的引用,但是ret也是局部变量,ret的空间并不是c的空间,所以ret不论打印几次都是10。
引用返回引用接受
这里返回了局部变量的引用,num函数在调用完后就释放了,返回局部变量的引用,ret就指向了被释放的c的空间,第一次打印num的空间还没有回收,但是后面的打印num函数的空间已经回收了,所以打印出来的是随机值。
引用做返回值的骚操作
上面的代码中,函数每调用一次c就会++一次。但是第二次函数调用时,函数的返回值是引用,相当于返回的是c的一个别名,对这个别名又进行了一次++。而ret又是num()的返回值,所以c其实一共加了3次,ret的结果就是3。
下面这个也一样,也是修改别名导致ret和c都变成了0。
传值、传引用效率比较
以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。
值和引用作为参数效率比较
#include <time.h>
struct A { int a[10000]; };
void TestFunc1(A a) {}
void TestFunc2(A& a) {}
void TestRefAndValue()
{
A a;
// 以值作为函数参数
size_t begin1 = clock();
for (size_t i = 0; i < 10000; ++i)
TestFunc1(a);
size_t end1 = clock();
// 以引用作为函数参数
size_t begin2 = clock();
for (size_t i = 0; i < 10000; ++i)
TestFunc2(a);
size_t end2 = clock();
// 分别计算两个函数运行结束后的时间
cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
值和引用做为返回值效率比较
#include <time.h>
struct A { int a[10000]; };
A a;
// 值返回
A TestFunc1() { return a; }
// 引用返回
A& TestFunc2() { return a; }
void TestReturnByRefOrValue()
{
// 以值作为函数的返回值类型
size_t begin1 = clock();
for (size_t i = 0; i < 100000; ++i)
TestFunc1();
size_t end1 = clock();
// 以引用作为函数的返回值类型
size_t begin2 = clock();
for (size_t i = 0; i < 100000; ++i)
TestFunc2();
size_t end2 = clock();
// 计算两个函数运算完成之后的时间
cout << "TestFunc1 time:" << end1 - begin1 << endl;
cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
引用
做参数,
1.输出型参数
2.大对象传参,提高效率做返回值
1.输出型返回对象
2.减少拷贝,提高效率
牢记:引用做返回值,返回的对象一定不能是局部的。
引用传参做输入型参数
如果是输入型参数。则参数部分尽量加上const。
void func(const int& n)
{
cout << n << endl;
}
int main()
{
int a = 10;
int b = 20;
double d = 12.34;
func(a);
func(b);
func(d);
func(1.323);
return 0;
}
上面的代码是可以跑过去的,这就说明const + 引用的接收性还是很好的。
引用和指针的区别
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。
但在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。所以实际上是会对引用的变量开辟空间的。
我们来看下引用和指针的汇编代码对比:
int main()
{
int a = 10;
int& ra = a;
ra = 20;
int* pa = &a;
*pa = 20;
return 0;
}
引用和指针的不同点:
- 引用概念上定义一个变量的别名,指针存储一个变量地址。
- 引用在定义时必须初始化,指针没有要求
- 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
- 没有NULL引用,但有NULL指针
- 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32位平台下占4个字节)
- 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小
- 有多级指针,但是没有多级引用
- 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
- 引用比指针使用起来相对更安全
7. 内联函数
说内联函数之前要先提一嘴宏函数。
我现在用#define定义一个宏函数来实现两个数的相加,如下:
#define ADD(x, y) ((x) + (y))
宏函数的代码很短,其实内联函数就是C++针对于C语言中宏函数的一种优化。我们以后就基本告别宏函数了。
概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
普通函数在调用的时候在反汇编中会有一个call的指令,就是专门用来调用函数的指令。
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。其实就相当于宏替换,只不过是更优的宏替换。
内联函数只有在符合条件的情况下才会在调用的地方展开,条件就是函数内部的代码语句足够少,少的程度也取决于内部语句的复杂程度。
比如说里面由六七句单纯的赋值语句,这样的情况是会展开的,如果有三条cout语句就可能不展开了,不展开的话就会直接调用这个函数。
《effectiv C++》一个条款说明:尽量使用 const、enum、inline 去替代宏。
inline函数几乎解决了宏函数的缺点,同时也兼具其优点。
- inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
举例: 当一个内联函数内部语句有100行时,如果这个函数调用了1W次,若展开,就会展开1W * 100行代码,若不展开直接调用,就会call调用1W次 + 100行代码。
- inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:
- inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。
在mian函数中,执行到Add函数的时候只看到了内联函数的声明,没办法直接展开,此时就会去调用内联函数。
但是在Add.h中,内联函数在编译的时候是不会放到符号表中的,因为在定义内联函数的时候就没想着在使用的时候去call内联函数,而是展开。 Add.c中同理。
所以最后是找不到Add函数的,这就会导致链接错误。
想要解决的话,就直接在.h文件中把实现加上。
8. auto关键字(C++11)
类型别名思考
随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:
- 类型难于拼写
- 含义不明确导致容易出错
std::map<std::string, std::string>::iterator 是一个类型,但是该类型太长了,特别容易写错。聪明的同学可能已经想到:可以通过typedef给类型取别名,比如:
typedef std::map<std::string, std::string> Map;
使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:
typedef char* pstring;
int main()
{
const pstring p1; // 编译成功还是失败?
const pstring* p2; // 编译成功还是失败?
return 0;
}
在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。
auto简介
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
给出下面例子:
【注意】
使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
auto的使用细则
- auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&。
- 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。
auto不能推导的场景
- auto不能作为函数的参数
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}
- auto不能直接用来声明数组
void TestAuto()
{
int a[] = {1,2,3};
auto b[] = {4,5,6};
}
- 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法
- auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有 lambda 表达式等进行配合使用。
9. 基于范围的for循环(C++11)
范围for的语法
在C++98中如果要遍历一个数组,可以按照以下方式进行:
void TestFor()
{
int array[] = { 1, 2, 3, 4, 5 };
for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
array[i] *= 2;
for (int* p = array; p < array + sizeof(array)/ sizeof(array[0]); ++p)
cout << *p << endl;
}
对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。
注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。
范围for的使用条件
- for循环迭代的范围必须是确定的
对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供begin和end的方法,begin和end就是for循环迭代的范围。
以下代码就有问题,因为for的范围不确定:
void TestFor(int array[])
{
for(auto& e : array) // array是一个指针,范围for里面只能传值
cout<< e <<endl;
}
- 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会讲,现在提一下,没办法讲清楚,现在大家了解一下就可以了)
10. 指针空值—nullptr(C++11)
在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下方式对其进行初始化:
void TestPtr()
{
int* p1 = NULL;
int* p2 = 0;
// ……
}
NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:
#ifndef NULL
#ifdef __cplusplus
#define NULL 0
#else
#define NULL ((void *)0)
#endif
#endif
上面的宏大致意思就是在C语言中NULL就是((void*)0),在C++中NULL就是0。
C++中:
C语言中:
可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:
程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的初衷相悖。在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。
于是C++又搞了一个新的关键字nullptr来替代宏NULL。
用法也是相同的。
注意:
- 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入的。
- 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。
- 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。
到此结束。。。