数字三角形模型
- 一、数字三角形模型
- 1. 摘花生(最大值)
- 2. 最低通行费(需要把边界置成0x3f)
- 我的错题点
- 3. ★★★ 取方格数
- 路径长度为k,第一条路线到x1=i,第二条路线到x2=j的所有方案
- 4. ★★★★★ 传纸条
- 就是 取方格数 的 题意延申一下
- 0x51 线性dp
- 经典例题:LIS LCS 数字三角形
- ✔例1. ★★★ Mr Young's Picture Permutations
- f[a][b][c][d][e]代表从后往前每排人数分别为a, b, c, d, e的所有方案的集合, 其中a >= b >= c >= d >= e
- ✔例2. 最长公共上升子序列
- a[1 ~ i]和b[1 ~ j]中以b[j]结尾的公共上升子序列的集合
- 关键思路
- ✔例3. 分级
- f[i][j] 代表所有给A[1] ~ A[i]分配好了值且最后一个B[i] = A'[j]的方案的集合;
- ✔例4. 移动服务
- f[i][x][y]表示已经处理完前i个请求,且三个服务员分别在p[i], x, y的所有方案的集合;
- ✔例5. 传纸条
- f[k, i, j] 表示两个人同时走了k步,第一个人在 (i, k - i) 处,第二个人在 (j, k - j)处的所有走法的最大分值。
- ✔补充相关例题:取方格数
- 路径长度为k,第一条路线到x1=i,第二条路线到x2=j的所有方案
- ✔例6. I-区域★★★★★
- ✔例7. 饼干
- 二、线性DP
- 1. 数字三角形 ✔1.6
- 2. ☆ 最长上升子序列
- 双重循环
- f[i] 以第i个数结尾的 上升子序列的最大值
- 3. ☆ 最长上升子序列 II
- ★f[i] 存储 最长上升子序列的 示范串
- ★ 二分 + dp优化
- 4. ☆ 最长公共子序列
- ★f[i][j]表示a的前i个字母,和b的前j个字母的最长公共子序列长度
- 思路 (在推导示例时,可以总结出)
- 5. ☆ 最短编辑距离
- ★f[i][j] 所有把a中的前i个字母 变成 b中前j个字母的集合的操作集合
- 做题总结
- 6. 编辑距离( 和上题差不多 )
一、数字三角形模型
1. 摘花生(最大值)
原题链接
原题链接
#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int n;
int main()
{
cin >> n;
while(n--)
{
int x,y;
cin >> x >> y;
for(int i = 1; i <= x; i++)
{
for(int j = 1; j <= y; j++)
{
cin >> f[i][j];
}
}
for(int i = 1; i <= x; i++)
{
for(int j = 1; j <= y; j++)
{
f[i][j] += max(f[i-1][j],f[i][j-1]);
}
}
cout << f[x][y] << endl;
}
return 0;
}
2. 最低通行费(需要把边界置成0x3f)
我的错题点
- 数组开大一点
- 这个题求的是最小值,所以需要把临界值置成最大值
原题链接
原题链接
#include<iostream>
using namespace std;
const int N = 110;
int g[N][N];
int f[N][N];
int n,m;
int main()
{
cin >> n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
cin >> g[i][j];
for(int i = 2; i <= n; i++)
f[0][i] = 0x3f3f3f3f,f[i][0] = 0x3f3f3f3f;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
f[i][j] = min(f[i-1][j],f[i][j-1]) + g[i][j];
}
cout << f[n][n];
return 0;
}
3. ★★★ 取方格数
路径长度为k,第一条路线到x1=i,第二条路线到x2=j的所有方案
原题链接
#include <bits/stdc++.h>
using namespace std;
const int N = 15, M = 2 * N;
int n;//方格图的边长
int w[N][N];
int f[M][N][N];
int get(int i, int j, int k)
{
return max(max(f[k - 1][i - 1][j - 1], f[k - 1][i][j - 1]), max(f[k - 1][i - 1][j], f[k - 1][i][j]));
//转移方程,分成 4 种考虑
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
int x, y, z;
while (cin >> x >> y >> z, x || y || z) w[x][y] += z;
for (int k = 2; k <= 2 * n; ++ k)
for (int i = 1; i < k; ++ i)
for (int j = 1, v; j < k; ++ j)
{
f[k][i][j] = get(i, j, k) + w[i][k - i];
if (i != j) f[k][i][j] += w[j][k - j];//!!!
}
cout << f[2 * n][n][n] << endl;
return 0;
}
4. ★★★★★ 传纸条
就是 取方格数 的 题意延申一下
原题链接
原题链接
#include <bits/stdc++.h>
using namespace std;
const int N = 59, M = 2 * N;
int n, m;//方格图的边长
int w[N][N];
int f[M][N][N];
int get(int i, int j, int k)
{
return max(max(f[k - 1][i - 1][j - 1], f[k - 1][i][j - 1]), max(f[k - 1][i - 1][j], f[k - 1][i][j]));
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m;
int x, y, z;
for(int i = 1;i <= n;++ i)
for(int j = 1;j <= m;++ j)
cin >> w[i][j];
for (int k = 2;k <= m + n;++ k)
for (int i = 1;i < k;++ i)
for (int j = 1;j < k;++ j)
{
f[k][i][j] = get(i, j, k) + w[i][k - i];
if (i != j) f[k][i][j] += w[j][k - j];
}
cout << f[m + n][n][n] << endl;
return 0;
}
0x51 线性dp
经典例题:LIS LCS 数字三角形
✔例1. ★★★ Mr Young’s Picture Permutations
原题链接
f[a][b][c][d][e]代表从后往前每排人数分别为a, b, c, d, e的所有方案的集合, 其中a >= b >= c >= d >= e
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 31;
int n;
LL f[N][N][N][N][N];
int main()
{
while (cin >> n, n)
{
int s[5] = {0};
for (int i = 0; i < n; i ++ ) cin >> s[i];
memset(f, 0, sizeof f);
f[0][0][0][0][0] = 1;
for (int a = 0; a <= s[0]; a ++ )
for (int b = 0; b <= min(a, s[1]); b ++ )
for (int c = 0; c <= min(b, s[2]); c ++ )
for (int d = 0; d <= min(c, s[3]); d ++ )
for (int e = 0; e <= min(d, s[4]); e ++ )
{
LL &x = f[a][b][c][d][e];
if (a && a - 1 >= b) x += f[a - 1][b][c][d][e];
if (b && b - 1 >= c) x += f[a][b - 1][c][d][e];
if (c && c - 1 >= d) x += f[a][b][c - 1][d][e];
if (d && d - 1 >= e) x += f[a][b][c][d - 1][e];
if (e) x += f[a][b][c][d][e - 1];
}
cout << f[s[0]][s[1]][s[2]][s[3]][s[4]] << endl;
}
return 0;
}
作者:yxc
链接:https://www.acwing.com/solution/content/4954/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
✔例2. 最长公共上升子序列
原题链接
a[1 ~ i]和b[1 ~ j]中以b[j]结尾的公共上升子序列的集合
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 3010;
int n;
int a[N], b[N];
int f[N][N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ ) scanf("%d", &b[i]);
for (int i = 1; i <= n; i ++ )
{
int maxv = 1;
for (int j = 1; j <= n; j ++ )
{
f[i][j] = f[i - 1][j];
if (a[i] == b[j]) f[i][j] = max(f[i][j], maxv);
if (a[i] > b[j]) maxv = max(maxv, f[i - 1][j] + 1);
}
}
int res = 0;
for (int i = 1; i <= n; i ++ ) res = max(res, f[n][i]);
printf("%d\n", res);
return 0;
}
作者:yxc
链接:https://www.acwing.com/solution/content/4955/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
关键思路
- dp很复杂,以bi结尾fi,j这样就会减少复杂度
- maxv记录是什么
由普遍算法 推广到 优化代码的过程理解了 就知道maxv存储的是什么了
✔例3. 分级
原题链接
比较不错的题解
f[i][j] 代表所有给A[1] ~ A[i]分配好了值且最后一个B[i] = A’[j]的方案的集合;
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
const int N = 2010, INF = 0x3f3f3f3f;
int n;
int a[N], s[N];
int f[N][N];
int ans;
int work()
{
for (int i = 1; i <= n; i ++ ) s[i] = a[i];
sort(s + 1, s + 1 + n);
for (int i = 1; i <= n; i ++ )
{
int mn = INF;
for (int j = 1; j <= n; j ++ )
{
mn = min(mn, f[i - 1][j]);
f[i][j] = mn + abs(a[i] - s[j]);
}
}
int res = INF;
for (int i = 1; i <= n; i ++ ) res = min(res, f[n][i]);
return res;
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
ans = work();
reverse(a + 1, a + 1 + n);
ans = min(ans, work());
printf("%d\n", ans);
return 0;
}
作者:种花家的兔兔
链接:https://www.acwing.com/solution/content/136108/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
✔例4. 移动服务
f[i][x][y]表示已经处理完前i个请求,且三个服务员分别在p[i], x, y的所有方案的集合;
原题链接
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 210, M = 1010, INF = 0x3f3f3f3f;
int n, m;
int w[N][N];
int f[M][N][N];
int p[M];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
scanf("%d", &w[i][j]);
for (int i = 1; i <= m; i ++ ) scanf("%d", &p[i]);
p[0] = 3;
memset(f, 0x3f, sizeof f);
f[0][1][2] = 0;
for (int i = 0; i < m; i ++ )
for (int x = 1; x <= n; x ++ )
for (int y = 1; y <= n; y ++ )
{
int z = p[i], v = f[i][x][y];
if (x == y || x == z || y == z) continue;
int u = p[i + 1];
f[i + 1][x][y] = min(f[i + 1][x][y], v + w[z][u]);
f[i + 1][z][y] = min(f[i + 1][z][y], v + w[x][u]);
f[i + 1][x][z] = min(f[i + 1][x][z], v + w[y][u]);
}
int res = INF;
for (int x = 1; x <= n; x ++ )
for (int y = 1; y <= n; y ++ )
{
int z = p[m];
if (x == y || x == z || y == z) continue;
res = min(res, f[m][x][y]);
}
printf("%d\n", res);
return 0;
}
作者:yxc
链接:https://www.acwing.com/solution/content/4957/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
✔例5. 传纸条
f[k, i, j] 表示两个人同时走了k步,第一个人在 (i, k - i) 处,第二个人在 (j, k - j)处的所有走法的最大分值。
原题链接
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 55;
int n, m;
int g[N][N];
int f[N * 2][N][N];
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
scanf("%d", &g[i][j]);
for (int k = 2; k <= n + m; k ++ )
for (int i = max(1, k - m); i <= n && i < k; i ++ )
for (int j = max(1, k - m); j <= n && j < k; j ++ )
for (int a = 0; a <= 1; a ++ )
for (int b = 0; b <= 1; b ++ )
{
int t = g[i][k - i];
if (i != j || k == 2 || k == n + m)
{
t += g[j][k - j];
f[k][i][j] = max(f[k][i][j], f[k - 1][i - a][j - b] + t);
}
}
printf("%d\n", f[n + m][n][n]);
return 0;
}
作者:yxc
链接:https://www.acwing.com/solution/content/3954/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
✔补充相关例题:取方格数
路径长度为k,第一条路线到x1=i,第二条路线到x2=j的所有方案
原题链接
#include <bits/stdc++.h>
using namespace std;
const int N = 15, M = 2 * N;
int n;//方格图的边长
int w[N][N];
int f[M][N][N];
int get(int i, int j, int k)
{
return max(max(f[k - 1][i - 1][j - 1], f[k - 1][i][j - 1]), max(f[k - 1][i - 1][j], f[k - 1][i][j]));
//转移方程,分成 4 种考虑
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
int x, y, z;
while (cin >> x >> y >> z, x || y || z) w[x][y] += z;
for (int k = 2; k <= 2 * n; ++ k)
for (int i = 1; i < k; ++ i)
for (int j = 1, v; j < k; ++ j)
{
f[k][i][j] = get(i, j, k) + w[i][k - i];
if (i != j) f[k][i][j] += w[j][k - j];//!!!
}
cout << f[2 * n][n][n] << endl;
return 0;
}
✔例6. I-区域★★★★★
原题链接
✔例7. 饼干
原题链接
二、线性DP
1. 数字三角形 ✔1.6
★f[i][j] 从下到上 走到f[i][j]的所有路径的最大值
原题链接
原题链接
#include<iostream>
using namespace std;
const int N = 510;
int f[N][N];
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= i; j++)
cin >> f[i][j];
for(int i = n-1; i >= 1; i--)
for(int j = 1; j <= i; j++)
f[i][j] += max(f[i+1][j],f[i+1][j+1]);
cout << f[1][1];
return 0;
}
2. ☆ 最长上升子序列
双重循环
f[i] 以第i个数结尾的 上升子序列的最大值
原题链接
#include<iostream>
using namespace std;
const int N = 1010;
int a[N],f[N];
int main()
{
int n;
cin >> n;
for(int i = 1; i <= n; i++)
cin >> a[i];
for(int i = 1; i <= n; i++)
{
f[i] = 1;
for(int j = 1; j <= i; j++)
{
if(a[i] > a[j])
f[i] = max(f[i],f[j]+1);
}
}
int res = 0;
for(int i = 1; i <= n; i++)
res = max(res,f[i]);
cout << res;
return 0;
}
3. ☆ 最长上升子序列 II
★f[i] 存储 最长上升子序列的 示范串
★ 二分 + dp优化
原题链接
#include<iostream>
#include<algorithm>
using namespace std;
const int N = 1e5+10;
int n;
int f[N],st[N];
int main()
{
cin >> n;
for(int i = 1; i <= n; i++) cin >> f[i];
int len;
st[1] = f[1];
len = 1;
for(int i = 2; i <= n; i++)
{
int pos = lower_bound(st+1,st+1+len,f[i])-st;
st[pos] = f[i];
len = max(len,pos);
}
cout << len;
return 0;
}
4. ☆ 最长公共子序列
★f[i][j]表示a的前i个字母,和b的前j个字母的最长公共子序列长度
原题链接
思路 (在推导示例时,可以总结出)
- f[i][j] 表示什么需要先想清楚。
表示的是:在i,j组合的情况下,的最大子串 长度
所以当 i,j相等时
f[i][j] = f[i-1][j-1] + 1
不相等的时候
f[i][j] = max(f[i-1][j],f[i][j-1]);
#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int n,m;
char a[N],b[N];
int main()
{
cin >> n >> m >> a+1 >> b+1;
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
if(a[i]==b[j])
f[i][j] = f[i-1][j-1] + 1;
else
f[i][j] = max(f[i-1][j],f[i][j-1]);
}
}
cout << f[n][m];
return 0;
}
5. ☆ 最短编辑距离
原题链接
★f[i][j] 所有把a中的前i个字母 变成 b中前j个字母的集合的操作集合
做题总结
- 由于需要用到前面的数据,所以一定用dp
- i j 相等则 在 i - 1 j-1 的基础 +1
- 如果不相等 则按着 所可以操作的步骤 + 1
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main()
{
scanf("%d%s", &n, a + 1);
scanf("%d%s", &m, b + 1);
for (int i = 0; i <= m; i ++ ) f[0][i] = i;
for (int i = 0; i <= n; i ++ ) f[i][0] = i;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= m; j ++ )
{
if (a[i] == b[j])
{
f[i][j] = f[i-1][j-1];
}
else
{
f[i][j] = min(f[i-1][j] + 1, f[i - 1][j - 1] + 1);
f[i][j] = min(f[i][j],f[i][j-1]+1);
}
}
printf("%d\n", f[n][m]);
return 0;
}
6. 编辑距离( 和上题差不多 )
原题链接