各位社区小伙伴们,Databend 于 2023 年 4 月 14 日迎来了 v1.1.0 版本的正式发布! 这次新版本是 Databend 发布1.0 版本之后的第一个大版本!相较于 v1.0.0 版本,开发者们一共新增了 1,616 次commit, 共计 505 个优化和修复,涉及 2,069 个文件变更,约 16 万 行代码修改。感谢各位社区伙伴的参与,以及每一个让 Databend 变得更好的你!
在 v1.1.0 版本中,我们为 COPY INTO
支持了基本的 ETL 能力,在数据导入过程中即可轻松转换数据;Databend 现在能够成功运行所有 TPC-DS 查询,此外,还进行了一些性能优化和功能改进。
Databend x 内核
Databend 重要新特性速览,遇到更贴近你心意的 Databend 。
COPY INTO 支持 ETL 能力
COPY INTO
是 Databend 跨多云数据导入的重要路径,现在,它也具备基本的数据转换能力,避免在临时表中存储预转换数据,并支持列重新排序、列省略和基于 SELECT
的转换查询。
CREATE TABLE my_table(id int, name string, time date);
COPY INTO my_table
FROM (SELECT t.id, t.name, to_date(t.timestamp) FROM @mystage t)
FILE_FORMAT = (type = parquet) PATTERN='.*parquet';
这一功能可以帮助你简化 ETL 工作流,从而更专注于数据分析。
Docs - Load Data | Transforming Data During a Load
支持全部 TPC-DS 查询
Databend 现已支持全部 99 条 TPC-DS 查询!
TPC-DS 是一个面向决策支持系统的包含多维度常规应用模型的决策支持 benchmark ,它对决策支持系统的几个普遍适用方面进行建模,包括查询和数据维护。TPC-DS 被广泛用于衡量决策支持和分析系统的性能。
Blog - Benchmarking TPC-DS with Databend
REPLACE INTO
Databend 现在支持使用 REPLACE INTO 语句插入或更新数据。该语句允许你指定一个冲突键(conflict key),用于判断是应该插入一行新数据,还是更新一行已有数据。
如果表中已经存在与冲突键相同的行,Databend 会用新数据更新这一行。否则,新数据会作为一行新记录添加到表中。你可以使用这个语句来轻松地同步不同来源的数据或处理重复记录。
#> CREATE TABLE employees(id INT, name VARCHAR, salary INT);
#> REPLACE INTO employees (id, name, salary) ON (id) VALUES (1, 'John Doe', 50000);
#> SELECT * FROM Employees;
+------+----------+--------+
| id | name | salary |
+------+----------+--------+
| 1 | John Doe | 50000 |
+------+----------+--------+
- Docs - DML Commands | REPLACE
Window Function
窗口函数(Window Function) 为每行数据进行一次计算:输入多行(一个窗口)、返回一个值。在报表等分析型查询中,窗口函数能优雅地表达某些需求,发挥不可替代的作用。
-- use aggrerate window function
SELECT date, AVG(amount) over (partition by date)
FROM BookSold
June 21|544.0
June 21|544.0
June 22|454.5
June 22|454.5
June 23|643.0
June 23|643.0
聚合窗口函数可以将聚合运算应用于窗口中的每一行数据。Databend 所支持的所有聚合函数都可以作为聚合窗口函数使用。
Docs - SQL Functions | Window Functions
Databend x 生态
Databend 的生态版图得到了进一步的完善。是时候将 Databend 引入你的数据洞见工作流啦!
可视化大盘
Metabase、Redash 和 Grafana 都是开源的可视化工具,能够从多个数据源中查询数据并将其可视化。
Databend 现在提供对上述三种工具的支持。你可以使用 Databend 作为数据源,利用这三种工具轻松构建可视化大盘,更好地理解和分析你的数据。
Docs - Data Visualization | Metabase
Docs - Data Visualization | Redash
Docs - Data Visualization | Connecting Databend With Grafana
编程语言支持
除了支持 Python、Go、Java 之外,Databend 现在还拥有自己的 Rust driver。这意味着你可以使用 Rust 轻松连接 Databend 并执行 SQL 查询。
use databend_driver::new_connection;
let dsn = "databend://root:@localhost:8000/default?sslmode=disable";
let conn = new_connection(dsn).unwrap();
let sql_create = "CREATE TABLE books (
title VARCHAR,
author VARCHAR,
date Date
);";
conn.exec(sql_create).await.unwrap();
crates.io - databend-driver
Databend x AI
当云数仓遇到当下最热的大模型会擦出怎样的火花?Databend 与 OpenAI 联乘,让生产力多一点 AI 。
AI Functions
Databend 现在内置实用 AI 函数 ai_to_sql
,支持将自然语言转换为 SQL 语句,轻松为复杂分析任务编写高质量的 SQL 。
SELECT * FROM ai_to_sql(
'List the total amount spent by users from the USA who are older than 30 years, grouped by their names, along with the number of orders they made in 2022');
另外,Databend 还支持文本 embeding 生成、相似度检索、文本补全等能力,一站式轻松构建基于 SQL 查询、由 AI 赋能的生产力工具。
SELECT doc_id, text_content, cosine_distance(embedding, ai_embedding_vector('What is a subfield of artificial intelligence?')) AS distance
FROM embeddings
ORDER BY distance ASC
LIMIT 5;
SELECT ai_text_completion('Artificial intelligence is a fascinating field. What is a subfield of artificial intelligence?') AS completion;
Docs - SQL Functions | AI Functions
AskBend
不如问问神奇海螺吧!Databend 现在上线 AskBend 知识库问答系统,可以在线问答关于 Databend 的一切。
P.S. AskBend 现已开源,由 Databend Cloud 和 AI Functions 强力驱动,你也可以使用 Markdown 文件创建并部署自己的智能小助手。
AskBend - asking for Databend documentation
Github - datafuselabs/askbend
下载使用
如果你对我们新版本功能感兴趣,欢迎来 Release v1.1.0 · datafuselabs/databend · GitHub 页面查看全部的 changelog 或者 下载 release 体验。
如果你还在使用旧版本的 Databend,我们推荐升级到最新版本,升级过程请参考:
Upgrading Databend | Databend
意见反馈
如果您遇到任何使用上的问题,欢迎随时通过 GitHub issue 或社区用户群中提建议
GitHub: GitHub - datafuselabs/databend: A modern cloud data warehouse focusing on reducing cost and complexity for your massive-scale analytics needs. Open source alternative to Snowflake. Also available in the cloud: https://app.databend.com
致谢
最后感谢参与新版本设计开发,测试,文档贡献的开发者们。
关于 Databend
Databend 是一款开源、弹性、低成本,基于对象存储也可以做实时分析的新式数仓。期待您的关注,一起探索云原生数仓解决方案,打造新一代开源 Data Cloud。
👨💻 Databend Cloud:https://databend.cn
📖 Databend 文档:Databend - The Future of Cloud Data Analytics. | Databend
💻 Wechat:Databend
✨ GitHub:https://github.com/datafuselabs/databend
————————————————
版权声明:本文为CSDN博主「Databend」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Databend/article/details/130009045